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Abstract—Test prioritization techniques select test cases that
maximize the confidence on the correctness of the system when
the resources for quality assurance (QA) are limited. In the
event of a test failing, the fault at the root of the failure has
to be localized, adding an extra debugging cost that has to
be taken into account as well. However, test suites that are
prioritized for failure detection can reduce the amount of useful
information for fault localization. This deteriorates the quality
of the diagnosis provided, making the subsequent debugging
phase more expensive, and defeating the purpose of the test
cost minimization.

In this paper we introduce a new test case prioritization
approach that maximizes the improvement of the diagnostic
information per test. Our approach minimizes the loss of di-
agnostic quality in the prioritized test suite. When considering
QA cost as the combination of testing cost and debugging cost,
on the Siemens set, the results of our test case prioritization
approach show up to a 53% reduction of the overall QA cost,
compared with the next best technique .

I. INTRODUCTION

Critical and high-availability systems, such as air traffic
control systems, systems of the emergency units, and bank-
ing applications, are becoming more and more complex and
dynamic. The number and complexity of the components
that form the systems is growing. Moreover, in the case
of Systems of Systems, or Service Oriented Architectures
components may not be available until deployment time,
e.g., third party external services. Components can be even
unknown at deployment time.

The quality assessment (QA) phase of these kind of
systems was traditionally performed either in a separate,
identical copy of the system, or by taking the system off-
line. Lately, run-time testing is emerging as the solution for
the validation and acceptance testing of the above systems.
Run-time testing is a testing method that has to be conducted
and performed in-vivo in the final execution environment of
a system [4], [11], [17].

The amount of resources available during the QA phase
of the software life-cycle is limited. In run-time testing this
is further exacerbated by the fact that tests will interfere with
the operations of the systems [4]. Consequently, the cost of
the QA phase needs to be minimized, while maximizing the
confidence in the integrated system.

Many approaches have been aimed at minimizing testing
cost by prioritizing tests with the objective of failure de-
tection, i.e., of detecting the presence of faults as early in
the testing process as possible [3], [14], [16]. What these
approaches usually do not consider is the fact that once the
presence of a fault has been detected (test phase), developers
have to find the actual location of the fault (debugging phase)
with the information produced by the tests.

The debugging phase can make use of automatic fault
localization techniques which help to significantly reduce
the debugging effort needed, as shown in [1], [10], [19].
However, the quality of the result of fault localization
techniques depends on the information provided by the
testing phase.

The information provided by tests can be improved by
selectively adding more test cases [2]. However, the usual
practice is to reduce the number of tests to save testing
time, not to increase it. Previous work has shown how test
suites that are reduced or prioritized for failure detection
can decrease the amount of useful information for the fault
localization [8], [18]. This will deteriorate the quality of
the diagnosis provided by the fault localization algorithm,
leading to a longer subsequent debugging phase, partially
defeating the purpose of the test cost minimization.

This poses the question of whether there exists a pri-
oritization technique putting emphasis on fault localization
performance rather than failure detection performance. The
goal should be to reduce the overall QA cost (testing and
debugging) and not trade testing for debugging effort.

This paper presents such a technique and make the
following contributions:

1) We present an analysis of why failure detection pri-
oritization deteriorates the performance of fault lo-
calization algorithms, which motivates our alternative
approach.

2) We introduce a prioritization strategy for fault localiza-
tion, contrasting with existing approaches whose goal
is failure detection. Our approach performs on-line
prioritization depending on the outcome of the tests
based on diagnostic information gain.

3) We evaluate our technique on the Siemens programs
in a semi-synthetic setting, comparing it to existing
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prioritization techniques in terms of both fault local-
ization and failure detection performance. Our results
show up to a 53% reduction of the overall QA cost,
when compared to the next best performing technique
in the Siemens set.

The paper is organized as follows. In Section II, we
describe the main concepts of fault diagnosis and the
diagnosis algorithm used in our experiments. Section III
surveys the existing prioritization techniques with which
we will compare our approach. In Section IV, we describe
why current prioritization techniques fall short for fault
localization. Section V introduces diagnostic prioritization
and the information gain heuristic. Our evaluation goals and
experimental setup are described in Section VI, while the
results are presented and discussed in Section VII. Related
work is surveyed in Section VIII. Section IX presents our
final conclusions and future work directions.

II. FAULT DIAGNOSIS

The objective of fault diagnosis is to pinpoint the precise
location of a fault in a program (a bug) by executing
tests and observing the program’s behavior. Diagnosis can
be achieved by statistical or probabilistic approaches, for
example Spectrum-based Fault Localization (SFL) [1], [10],
which are lightweight and based on coverage information.
Therefore, we will use SFL as our diagnosis technique.

A. Diagnostic Process

For compatibility with the test selection algorithms in the
following sections, we will define the diagnostic process as
the process of obtaining a set of diagnostic explanations D =
{d1, . . . , dk} from binary test outcomes and the components
involved in the tests. Each explanation dk is a subset of
the components in the system, which, at fault, explain the
observed failures. As most previous work [8], [10], [18], for
the scope of this paper, we will assume that only one fault
is present.

The following inputs are involved in diagnosis:
• A finite set C = {c1, c2, . . . , cj , . . . , cM} of com-

ponents (typically source code statements) which are
potentially faulty.

• A corresponding set of prior fault probabilities pj for
each component. These priors represent the knowledge
available before any test is executed.

• A finite set T = {t1, t2, . . . , ti, . . . , tN} of tests with
binary outcomes O = (o1, o2, . . . , oi, . . . , oN ), where
oi = 1 if test ti failed, and oi = 0 otherwise.

• A N ×M coverage matrix, A = [aij ], where aij = 1
if test ti involves component cj , and 0 otherwise.

Due to the limited number of tests, the number of possible
diagnostic explanations is typically very high. Therefore, it is
necessary to rank diagnostic explanations by the likelihood
of that diagnostic explanation being the correct one, for
example by using statistical similarity coefficients, or by

Program: Character Counter t1 t2 t3 t4 t5 t6 t7 t8 Prior
c0 0 0 0 0 0 0 0 0
c1 main() { 1 1 1 1 1 1 1 1 1/13

c2 int let, dig, other, c; 1 1 1 1 1 1 1 1 1/13

c3 let = dig = other = 0; 1 1 1 1 1 1 1 1 1/13

c4 while(c = getchar()) { 1 1 1 1 1 1 1 1 1/13

c5 if (’A’<=c && ’Z’>=c) 1 1 1 1 1 1 1 0 1/13

c6 let += 2; /* FAULT */ 1 0 1 1 0 0 1 0 1/13

c7 elif (’a’<=c && ’z’>=c) 1 1 0 1 1 1 1 0 1/13

c8 let += 1; 1 0 0 0 1 0 1 0 1/13

c9 elif (’0’<=c && ’9’>=c) 1 1 0 1 1 1 0 0 1/13

c10 dig += 1; 1 1 0 1 0 0 0 0 1/13

c11 elif (isprint(c)) 0 0 0 0 1 1 0 0 1/13

c12 other += 1;} 0 0 0 0 1 0 0 0 1/13

c13 printf("%d %d %d\n", 1 1 1 1 1 1 1 1 1/13
let, dig, others);}

Test case outcomes 1 0 1 1 0 0 1 0

Table I
FAULTY PROGRAM AND FAULT DIAGNOSIS INPUTS

using a Bayesian approach as we will explain in the next
subsection.

B. Diagnostic Ranking by Bayesian Reasoning

In the case of Bayesian approaches, the likelihood of an
explanation corresponds to the posterior probability of that
diagnostic being correct, given the outcomes of the executed
tests, Pr(dk|oi, oi−1, . . .), for a particular diagnosis dk. As
there can only be one correct explanation, all the individual
probabilities add up to 1.

For each test case, the probability of each diagnostic
explanation dk ∈ D is updated depending on the outcome
oi of the test, following Bayes’ rule:

Pr(dk|oi, oi−1, . . .) =
Pr(oi|dk) · Pr(dk|oi−1, . . .)

Pr(oi)
(1)

In this equation, Pr(oi|dk) represents the probability of
the observed outcome, if that diagnostic explanation dk is
the correct one. It is related to the intermittency of the fault,
i.e., whether the component always causes a failure when
used in a test, or only in some cases. Although for software
it is quite common to have intermittent faults, for the purpose
of this paper (which focuses on prioritization) for simplicity
we will assume that a faulty statement in a program will
always generate a failure if covered, thus Pr(oi = 1|dk) =
1− Pr(oi = 0|dk) = aik.

Pr(oi) represents the probability of the observed outcome,
independently of which diagnostic explanation is the correct
one. The value of Pr(oi) is a normalizing factor that is given
by

Pr(oi) =
∑

dk∈D

Pr(oi|dk) · Pr(dk|oi−1, . . .) (2)

C. Diagnostic Example

Table I shows an example faulty program [7], eight tests,
and their statement coverage (the matrix A is transposed for
the sake of readability).

As we assume a single fault is present, each explanation in
D corresponds to one code statement: ∀dk ∈ D, dk = {ck}.
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Consequently, the initial probability of each diagnostic can-
didate corresponds to the prior probability of each compo-
nent: ∀dk ∈ D,Pr(dk|i = 0) = pk = 1

13 .
After applying test t1, we observe a failure. The proba-

bilities of all the covered statements cj (including c6) are
updated by

Pr(dj |o1) =
a1,j · Pr(dj |i = 0)

Pr(o1)
=

1 · 1
13

11
13

=
1
11

The statements which were not covered are updated by

Pr(dj |o1) =
a1,j · Pr(dj |i = 0)

Pr(o1)
=

0 · 1
13

11
13

= 0

Their zero value follows from the fact that, if they were not
involved in the test, and the test failed, it is impossible that
these statements are faulty.

After applying test t2, no failure occurs. The probabilities
of the covered statements which are not already 0 are then
updated by

Pr(dj |o2, o1) =
(1− a2,j) · Pr(dj |o1)

Pr(o2)
=

0 · 1
11

2
11

= 0

and the untouched statements by

Pr(dj |o2, o1) =
(1− a2,j) · Pr(dj |o1)

Pr(o2)
=

1 · 1
11

2
11

=
1
2

The last test applied is t3, which fails. The only covered
component with non-zero probability is c6, and it is updated
by

Pr(d6|o3, o2, o1) =
a3,6 · Pr(d6|o2, o1)

Pr(o3)
=

1 · 1
2

1
2

= 1

and the probability of c8 is therefore 0. The remaining tests
have no influence on the diagnosis.

D. Residual Diagnostic Cost

A diagnostic process is divided in two phases, testing-
based diagnosis (outlined above) and residual diagnosis.
During testing, test cases are applied to collect observations
in order to refine the initial diagnosis D0. During the residual
diagnosis phase, the final diagnosis after N observations
DN is returned to the user as the basis to find the real
fault. Typically the user finds the fault by inspecting each
candidate in descending order according to the updated
diagnostic probabilities.

The residual diagnosis cost, W , is the manual work that
has to be performed by the developer, who has to inspect
(debug) each of the dk explanations in DN top down, until
he or she finds the real fault d∗.

In the following, we define W as the fraction of com-
ponents the developer has to examine until finding the real
fault d∗ [1], according to

W (d∗) =
τ

M − 1
· 100% (3)

where τ is the position of d∗ in the ranking. Because
multiple explanations can be assigned the same probability,
the value of τ is averaged between the ranks of explanations
that share the same probability, amongst which the real fault
d∗ is located.

τ =
|j : Pr(dj |oi) > Pr(d∗|oi)|

2
+

|j : Pr(dj |oi) ≥ Pr(d∗|oi)| − 1
2

(4)

There are two ways of reducing diagnostic cost. One
can try to develop better techniques to reduce the residual
diagnosis effort W , by reducing the number of candidates,
or by improving the ranking so that the real explanation d∗
ranks higher.

One can also try to reduce testing cost, by executing only
a subset of the tests. Prioritizing T in such a way that the
executed subset of T yields the highest diagnostic accuracy
(minimizing W ) is the main focus of this paper.

III. TEST CASE PRIORITIZATION

Test case prioritization techniques order test cases with
respect to a given goal, so that those tests with the highest
utility (which bring the test process closer to its goal), are
given higher priorities and therefore are executed earlier in
the testing process.

A failure is a deviation of the expected behavior of a
program, caused by a fault. The most common prioritization
goal is to increase the rate of failure detection. It means,
tests are executed in an order such that failures occur as
early as possible in the testing process, so that confidence
in the presence or absence of faults is reached faster. The
following prioritization techniques have been proposed in
order to achiever this goal proposed.

Random: this is the most straightforward prioritization
criterion, which orders test cases according to random per-
mutations of the original test suite. Random permutations
are used as control in many prioritization experiments [3],
[14], [16].

Statement coverage: the test cases that will cover the
highest total number of statements are executed first, under
the assumption that the more statements are covered by a
test, the higher is the probability of triggering a failure. If
a statement is covered without producing a failure, covering
it again is meaningless as it will not produce a failure
either [3], [14]. This reasoning conduces to the definition
of the additional coverage heuristic, where test cases are
selected iteratively in terms of the additional coverage they
yield, taking into account all the test cases that were already
executed, i.e.,

Hadd−st(ti) =
M∑

j=1

aij · (1− covj) (5)

where covj = 1 if statement j has been covered so far.
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Adaptive Random Testing: ART is a hybrid random-
coverage-based test ordering [7]. It selects test cases in two
steps, first it selects a group of tests randomly, and from that
group it selects the test which maximizes a distance function
with the already selected test cases. This distance function
can be either the minimum distance with all executed tests,
the maximum distance, or the average distance. In this paper
we will compare with the minimum distance heuristic, as it
was cited [7] as the most promising one. It is defined as

Hart−mxmn(ti) = min
tj∈C

(δ(ti, tj)) (6)

where C is the set of already applied tests and δ is the
distance function used, in [7] the Jaccard distance.

IV. PRIORITIZATION AND DIAGNOSIS

Previous empirical work has shown that early failure
detection and fault localization seem to be rather incompati-
ble goals [8], [18]. The evolution of the diagnostic effort
W , per unit of test effort, T , is negatively affected by
criteria for early failure detection. Random ordering, which
has been traditionally considered the baseline prioritization
technique [3], [14], [16], was found to perform as good
as or better than all other prioritization techniques, except
Hadd−st. However, even for the latter case the random order
was better for some subject programs [8].

The main reason for the poor diagnostic performance of
existing prioritization techniques is that they perform off-
line prioritization, in such a way that tests maximize the
probability of failing. This approach may be appropriate for
regression testing, but not for fault diagnosis. When per-
forming fault diagnosis, if a test has failed, the components
covered by the test become important suspects. However,
many regression prioritization algorithms will choose a next
test that covers different components, whereas from the
diagnostic point of view, the next test case should help
differentiate between the current suspects. Therefore a test
order independent of the outcomes of the tests cannot be
used. The order has to be adapted on-line, depending on the
output of the previous tests.

Table II shows an example of this situation when perform-
ing additional-statement prioritization. We use the Bayesian
diagnosis approach from Section II-B, once more assuming
a fault always triggers a failure. The initial probability of
each diagnostic candidate pj is also uniformly distributed.
For clarity, the fourth column shows only the probabilities
of diagnostic explanations which are non-zero. Initially, no
statement has been covered, and D ranks every component
with uniform probability.

The additional-statement heuristic selects test t1 as first
test, as it covers the most test cases, and, indeed, t1 finds
the first failure. As a result of the failure, all the cj covered
by t1 move to the top of the ranking. Unfortunately, the test
case covered many statements, so |D| does not decrease too
much.

In the second step, test t5 is selected because it pro-
vides the highest additional coverage, and passes. Because
it passed, the updated probability of those candidate ex-
planations in D which were covered by t5 drops to 0
(following the permanent fault assumption of Section II-B).
The statements which where not covered remain at the top
of D.

Full coverage has been reached, so in the third step, the
coverage is reset as described in [14], instead of opting for
a random order. Test t4 provides the highest coverage, and
indeed fails. However, it covered both c6 and c10, so it
provides no extra information and D does not change. This
happens also in the fourth step for t6.

Finally, in the fifth step, a test case that covers c10 but
not c6 is chosen. As it passes, c10, which was covered, is
assigned a probability of 0, and c6 remains as only (and
correct) explanation.

As we can see, Hadd−st has the problem that 2 tests
provide no information to the diagnosis independent of their
outcome, i.e., a complete waste of effort.

As a comparison, Table III shows the optimal test order for
a fault in c6. With just one test case, the set of candidates is
drastically reduced. The next test case finalizes the diagnosis
by using a test case that bisects D. The order of the
remaining tests is irrelevant for the diagnosis, as none will
provide more information. The plot in Figure 1 depicts the
evolution of both approaches.

Although simple, this example shows that maximizing the
probability of a failure does not maximize the information
that the diagnostic algorithm receives. In fact, as test cases
that cover many statements are those with the highest
failure probability, those tests will not provide much useful
information because the number of remaining diagnostic
candidates will not decrease substantially.

V. DIAGNOSTIC PRIORITIZATION

In the following we will present diagnostic prioritization,
an on-line greedy prioritization approach that takes into
account the observed test outcomes to determine the next
test case. Our work is motivated by research in sequential
diagnosis of hardware systems, where algorithms exist to
diagnose systems with permanent [12] and intermittent [13]
faults.

Diagnostic prioritization uses the same inputs as tradi-
tional test prioritization and fault localization techniques in
software engineering: component set C, prior fault proba-
bilities pj , tests T and coverage matrix A. Additionally, a
special component c0 is added to represent the special condi-
tion that no other component is faulty (fault-free system). No
test can check the fault-free component c0 directly, therefore
ai0 = 0 for all i.

High-utility tests are those tests which, at each step, maxi-
mize the reduction of diagnostic cost on average, considering
all possible diagnostic candidates dk, and both possible test
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Test oi Covered Statements c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 W
0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.500

t1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.357
t5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 * 0.50 0.50 0.038
t4 1 1 1 1 1 1 1 1 0 1 1 0 0 1 * 0.50 0.50 0.038
t6 0 1 1 1 1 1 1 1 0 1 1 1 0 1 0.50 0.50 0.038
t7 1 1 1 1 1 1 1 1 1 0 0 0 0 1 * 1.00 0.000
t2 0 1 1 1 1 1 1 1 1 1 1 0 0 1 * 1.00 0.000
t3 1 1 1 1 1 1 1 0 0 0 0 0 0 1 * 1.00 0.000
t8 0 1 1 1 1 0 0 0 0 0 0 0 0 1 * 1.00 0.000

(*) Step after which coverage is reset.

Table II
EVOLUTION OF D FOR THE Hadd−st HEURISTIC FOR OUR EXAMPLE SYSTEM.

Test oi Covered Statements c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 W
0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.500

t5 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0.50 0.50 0.038
t7 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1.00 0.000
t6 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1.00 0.000
t1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.00 0.000
t4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.00 0.000
t2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1.00 0.000
t3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.00 0.000
t8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1.00 0.000

Table III
OPTIMAL EVOLUTION OF D FOR c6 IN OUR EXAMPLE SYSTEM.

Test oi Covered Statements c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 W
0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.500

t3 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.214
t8 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0.50 0.50 0.038
t2 0 1 1 1 1 1 1 1 0 1 1 0 0 1 1.00 0.000
t1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1.00 0.000
t4 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1.00 0.000
t5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1.00 0.000
t6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1.00 0.000
t7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.00 0.000

Table IV
EVOLUTION OF D FOR THE HIG HEURISTIC FOR OUR EXAMPLE SYSTEM.

outcomes: pass and fail. This reduction in diagnostic cost
can be seen as an increase in diagnostic information, i.e., a
reduction of the information entropy of the candidate set D.
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Figure 1. W (T ) for three prioritization approaches

Applying this reasoning, at each decision step l in the test
sequence, the test yielding the highest average information
gain is chosen. The information gain heuristic [9], IG, is
defined as

HIG(D, ti) = H(D)
− Pr(oi = 0) ·H(D|oi = 0)
− Pr(oi = 1) ·H(D|oi = 1) (7)

where H(D) is the information entropy [15] of the diagnostic
candidate set D, defined as

H(D) = −
∑

dk∈D

Pr(dk|oi, . . .) · log2(Pr(dk|oi, . . .)) (8)

In the case when any Pr(dk|oi) = 0, H can still be
calculated, as lim

x→0
= x · log2 x = 0.

In Equation 7, D|oi = 0 represents the updated diagnosis
if test ti passes, and D|oi = 1 if it fails.

The rationale for this heuristic is that H is an estimation of
both the remaining tests towards an unambiguous diagnostic,
and the residual diagnostic cost if testing would stop at the
given state. Under ideal conditions, diagnostic prioritization
performs a binary search, bisecting the set of candidates after
each test. Therefore, the number of tests (T ) needed to reach
a diagnostic is related to the number of binary tests needed
to separate the candidates.

Furthermore, H and W are both monotonically decreasing
after each test. Ideally, after each test, D contains half the
number of candidates with non-null probabilities, reducing
W in half and H by 1 bit. Therefore, a decrease in H also
represents a reduction in residual diagnostic cost W , even
when their correlation is not so strong.
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Algorithm 1 Diagnostic Prioritization
D ← ({c0}, {c1}, . . . , {cM})
for all dk ∈ D do

Pr[dk] = pj

for l← 1, N do
i(l) = arg max (A,HIG(D, ti))
oi(l) = RUNTEST(ti(l))
for all dk ∈ D do

Pr[dk]l = Pr(oi(l)|dk)·Pr[dk]l−1

Pr(oi(l))

REMOVEROWIN(A, i(l))
return SORT(D, Pr)

The pseudocode in Algorithm 1 describes all the steps
in the information gain prioritization procedure. Table IV
shows the evolution of D and Pr in our example, for each
test selected by the algorithm, and the plot in Figure 1
depicts the evolution of W with respect to T compared to
Hadd−st and the optimal solution.
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Figure 2. Optimal test sequence of the example system as tree, including
fault-free candidate c0

Conceptually, when considering all the possible test out-
comes, a test suite prioritized for diagnosis is a tree, in
contrast with off-line prioritization techniques using a static
list. Figure 2 shows the complete tree for the system in
Table I. Circular nodes contain the top-ranked candidates
at each point in the decision process, and rectangular nodes
represent which test is applied. The leaf nodes represent
states where no test can improve the diagnostic, either

because an unambiguous diagnosis has been reached, or
because no test can refine the diagnostic any further. The
average diagnostic effort (W ) is annotated next to each
D state. The probability of the outcome of each test is
annotated next to the outgoing arrows from tests. An empty
arrowhead represents a passed test, and a filled arrowhead
represents a failed test.

Although the complete tree has up to O(2N ) nodes, when
calculated on-line, only the branches corresponding to the
observed test outcomes have to be calculated. In our example
system, this is marked with thicker lines in Figure 2. Con-
sequently, the algorithmic complexity of the information-
gain approach is O(MN2), similar to the Hadd−st heuristic.
Comparison with the worst case O(M3N) complexity of
ART [8] depends on the relative size of M and N . In the
benchmark suite used in our experiments N is much bigger
than M , therefore ART has a somewhat lower cost.

VI. EXPERIMENTAL SETUP

In order to evaluate the applicability of diagnostic priori-
tization, we address the following questions.

Question 1: What is the evolution of diagnostic effort
(W ) with respect to testing effort (T ) for the information
gain heuristic HIG? How does HIG compare to random
order and those generated by Hadd−st and Hart−mxmn?

Question 2: What is the fault detection performance of
the new ordering produced by HIG?

Question 3: What is the best prioritization technique,
taking into account the overall combined cost of testing and
diagnosis?

For our study, we use a set of test programs known as
the Siemens set [5]. The Siemens set is composed of seven
programs. Each program has a set of test inputs that ensures
full code coverage. Table V provides more information about
the programs in the package (for more detailed information
refer to [5]). Although the Siemens set was not assembled
with the purpose of testing fault diagnosis techniques, it is
typically used by the research community as the standard
set of programs to test their techniques.

Program LOC Tests Description
print tokens 563 4130 Lexical Analyzer
print tokens2 509 4115 Lexical Analyzer

replace 563 5542 Pattern Matcher
schedule 412 2650 Priority Scheduler
schedule2 307 2710 Priority Scheduler

tcas 173 1608 Aircraft Control
tot info 406 1052 Information Measure

Table V
SET OF PROGRAMS AND VERSIONS USED IN THE EXPERIMENTS

The provided faults with each program in the set are
not enough to obtain statistically significant results in some
cases, given that diagnostic prioritization is designed for best
average performance among the whole set of potential faults.
Therefore we opt for a semi-synthetic approach, using the
original spectra, but simulating a bigger sample of faults than
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the ones provided by the Siemens set. The test outcomes
are obtained by randomly choosing a faulty statement with
uniform probability, and using its execution pattern (column
in A) as test outcomes. Every time the fault is covered, an
error is produced.

The coverage matrix A is obtained by instrumenting each
of the programs with Zoltar [6] to obtain the statements
covered by each test case. Type and variable declarations
and other static code which is not instrumented were always
assigned aij = 0 in previous literature. For our experiments,
we reverse this convention, assigning aij = 1 for static
code to avoid conflicts with the special ai0 column (See
Section VII-D).

To answer Question 1, we measure and plot the evolution
of W with respect to T for the first 100 tests of each
program’s prioritized test suite, for 500 simulated sample
faults. We compare the random, Hart−mxmn, Hadd−st, and
HIG heuristics.

With respect to Question 2, the test case in which the
first failure occurs is stored, for each of the prioritized
test suites. We compare the occurrence of the first failure
for the random, Hart−mxmn, Hadd−st, and HIG heuristics.
Following [14] we calculate the APFD measure to evaluate
the rate of fault detection for the prioritized test suites. For a
test suite with n tests and a set of m faults, where each fault
Fi is first revealed in test Tffi, the APFD value of such test
suite is given by

APFD = 1− Tff1 + Tff2 + . . .+ Tffm

nm
+

1
2n

(9)

In order to answer Question 3, we calculate the combined
cost of the detection and residual diagnosis of each fault. We
assume that the test cost and (absolute) residual diagnosis
cost can be added according to

C = Tff +M ·W (Tff ) (10)

where Tff is the test where the first failure happens, and that
the diagnostic process (debugging phase) starts the moment
a failure is revealed. Note that we ignore relative differences
in test cost and residual diagnosis cost.

VII. RESULTS

A. Question 1: Fault Localization Performance

Figure 3 shows the evolution of W with respect to the
number of executed tests T , averaged for all programs and
per program as well. As can be seen, HIG is consistently
better than any other technique for every program, reach-
ing the lower asymptote (the point where no other test
can provide more diagnostic information) in less than 10
tests, for every program. No other technique achieves this
improvement rate.

Consistent with [8], random orderings are the worst of
all orders. The order created by Hart−mxmn is consistently
better than random because it chooses tests always at a

certain distance to the already applied ones. By doing this,
the chance of choosing a test that bisects the current set
of diagnostic candidates increases. The orders created by
Hadd−st do have a good initial performance, but after a few
tests the progress stops, and W decreases very slowly.

The plot for schedule2 in Figure 3 depicts an interest-
ing case where A is extremely dense (including tests with
full coverage). This makes Hadd−st work extremely poorly
because it will choose such tests, which add no diagnostic
information at all, first. Also Hart−mxmn does not differ
with random because it is difficult to keep a significant
distance with the previous tests. Only HIG is prepared to
deal with this situation, and makes the most out of the
available pool of tests.

In summary, based on the plots, we conclude that HIG is
most suitable for the QA purpose of fault localization. In the
next section we will see how this implies a trade-off with
failure detection.

B. Question 2: Failure Detection Performance

Figure 4 shows the averaged APFD scores for each
heuristic, with their maximum and minimum values. By
using permanent faults in our simulation, the values of the
APFD scores are greater than in previous work, where inter-
mittent faults were used. However, the differences in failure
detection performance between each technique remain.

In Figure 4, it can be clearly seen how Hadd−st is
the best performing technique, in terms of mean APFD
score and dispersion among programs. This is expected,
as the assumptions under which Hadd−st was devised are
completely met in our experiment. The failure detection
performance of HIG is lower than Hadd−st and slightly
lower than Hart−mxmn, although with a lower dispersion.
Hart−mxmn has a better performance than random and a
lower dispersion, consistent with [7]. Again, this is caused
by the coverage distance kept between each test.

Theoretically, the number of tests until the first failure
occurs can be modeled in the ideal case by a geometric dis-
tribution X ∼ G(p), whose expected value is E[X] = p−1.
The objective of Hadd−st is choosing tests with maximum
failure probability, ideally p = 1.0, and therefore approx-
imately 1 test is needed on average (Tff ≈ 1). On the
other hand, HIG tends to select test cases which balance
the probability of passing and failing, ideally p = 0.5, and
therefore on average needs 2 tests (Tff = 2).

In summary, when considering early failure detection as
the main goal, Hadd−st is more suitable for this purpose.

C. Question 3: Best Combined Performance

Table VI shows the average combined costs according to
Equation 10 per program, at the point where the first failure
occurs (T = Tff ), and the improvement with respect to a
random order.
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Figure 3. W (T ) for the various prioritization approaches (Siemens Set)
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In our case, considering the QA cost as a whole, the
number of tests required to reveal the presence of a fault Tff

is not the most relevant term, because in general, testing is an
automated process whereas debugging is a manual, cognitive
process, and therefore much more costly.
Hadd−st has an increased cost over random orders, be-

cause although faults are detected very early, the diagnostic
information gain is very limited. Despite the fact that HIG

needs more tests to detect the presence of a fault, this is more
than compensated by the improved diagnostic information
provided.

From the data in our experiments, we conclude that the
HIG order is the most appropriate for the global purpose of
reducing combined QA cost, with an average cost reduction
of 39% with respect to the combined cost of randomly
ordered tests.

Program Rand Hart−mxmn Hadd−st HIG

C C ∆C C ∆C C ∆C
print tokens 210.5 210.6 +0.1% 275.2 +30.7% 143.3 -32.0%

print tokens2 187.5 189.6 +1.1% 247.5 +32.0% 109.4 -41.6%
replace 195.2 193.0 -1.1% 262.8 +34.6% 116.7 -40.2%

schedule 176.9 177.3 +0.2% 202.9 +14.7% 95.0 -46.3%
schedule2 138.1 136.7 -1.0% 154.5 +11.8% 64.2 -53.5%

tcas 69.3 69.1 -0.3% 78.9 +13.7% 44.3 -36.1%
tot info 169.9 174.8 +2.9% 195.1 +14.9% 118.8 -30.0%

Table VI
AVERAGE COMBINED COST C = Tff + M ·W (Tff )

As on-line prioritization has to be performed for each
test, the time overhead imposed by the algorithm is a
critical success factor in this approach to QA. For the
coverage matrix of print_tokens (4130×563), selecting
a test takes in our (non-optimized) experimental platform
approximately 1s of CPU time. For comparison, ART takes
an average of 20ms per test. This overhead can be avoided
because the next case can be pre-computed in parallel with
the test being executed. It must be taken into account that
it is necessary to speculatively pre-compute the next test
for both possibilities of the yet unknown outcome, which
requires twice the time.

D. Threats to Validity

We perform our experiments in a permanent fault setting,
which is not very common in software. With respect to fault
intermittency, although the numerical values of the results
on Questions 1 and 2 are different from literature, the con-
clusions drawn are consistent with work where intermittent
faults were used [8], [14], [18].

Modifying the columns in A where, for any i, aij = 0 to
aij = 1 obeys to practical reasons. From a practical point of
view, those statements usually correspond to interface, type
and variable declarations. Although they are not ‘executed’
in test cases, they influence every single run. Therefore, we
consider that every test case is checking them. This change
does not affect W significantly as a fault in executable
code will always rank above static statements. If the fault is
located in static code, having aij = 0 would send the fault
to the bottom of the ranking, whereas with aij = 1 it will
be kept as a plausible diagnostic explanation, improving W
independently of the prioritization algorithm used

Simulation of faults has enabled us to obtain a greater
sample of faults per program, but it also affects the validity
of our results. As we used the simulated fault distribution as
input for the prioritization algorithm, our results show the
performance of diagnostic prioritization when it has the best
prior information available, something to take into account
for its practical application.

With regard to our results in Question 3, the construct
validity of the formula for C has to be considered. Our
formula considers that the cost of a test is equal to the cost
of manually inspecting a component (which can be seen as
a sort of ‘test’ as well). Manual inspection (debugging) is
usually much more expensive than just testing, which means
that our formula is actually pessimistic in terms of the cost
improvement we obtain with HIG.

VIII. RELATED WORK

The information gain heuristic was first proposed to solve
the problem of sequential diagnosis of hardware systems [9].
Algorithms for solving sequential diagnosis exactly which
can be applied to systems with permanent [12] and inter-
mittent [13] faults do exist.

As mentioned earlier, our work was motivated by pre-
vious empirical evidence that test suite prioritization and
reduction [3], [14], [16] techniques have a negative impact
on the diagnostic quality provided by fault localization
algorithms [8], [18]. In [2], the diagnostic quality that a test
suite provides is enhanced by adding new test cases that
increase the number of dynamic basic blocks (DBB). DBBs
are blocks of code that have different execution patterns (i.e.,
their corresponding columns in A are different). Blocks with
similar columns will always rank together, increasing resid-
ual diagnostic effort. This enhancement is complementary
to our technique, as it provides a lower W limit, whereas

SERG González, Piel, Gross, van Gemund – Prioritizing Tests for Software Fault Localization

TUD-SERG-2009-034 9



our approach ensures that such limit is reached in the fewest
possible tests.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a specific diagnostic
prioritization of test cases that reduces the loss of diagnostic
information to a minimum. Our experiments have shown
that in terms of diagnostic information gain per test case,
diagnostic prioritization is the best existing technique. This
comes at the price of a reduced first failure detection
performance with respect to additional-coverage techniques.
However, when considering the overall combined cost of
both testing and manual residual diagnosis, our experiments
have shown cost reduction of up to 53% with respect to the
next best performing technique.

In future work we will extend the validation of our
approach to larger systems with intermittent faults, a more
realistic scenario in software. We will also explore the per-
formance of our approach at different levels of granularity,
such as interface, and component-level granularities.
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