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Abstract

Probabilistic logics have attracted a great deal of attention during the @asydars. Where logical
languages have, already from the inception of the field of artificial inteligetaken a central position
in research on knowledge representation and automated reasorobgbitistic graphical models with
their associated probabilistic basis have taken up in recent years a siwmsiiop when it comes to
reasoning with uncertainty. There are now several different padpads literature to merge logic and
probabilistic graphical models. Probabilistic Horn logic combines Horn lagib probability theory,
which yields a probabilistic logic that allows reasoning with classes of Bayesavorks. Bayesian
logic is similar in expressive power to probabilistic Horn logic; the main dffiee is that it is primarily
meant as a language for generating Bayesian networks. Finally, M&g@ networks have recently
been proposed as a language for generating Markov networks usitglel-theoretic interpretation of
a logical specification. However, whereas Bayesian networks haegtrattive semantics, they suffer
from the fact that different Bayesian networks may representtigxtice same independence relation.
Markov networks, on the other hand, lack in expressiveness wipeasenting independence information.
The formalism of chain graphs is increasingly seen as a natural plishalgraphical formalism as it
generalises both Bayesian networks and Markov networks, and hatsractive semantics in the sense
that any Bayesian network has a unique graphical representationhasnagcaph. In this paper, a new
probabilistic logic, called chain logic, is developed along the lines of probabikisrn logic. This new
probabilistic logic allows representing subtle independence informatiorcdimaint be represented by all
previously developed probabilistic logics.

1 Introduction

There has been a considerable amount of work in the field dic&t intelligence during the past two
decades on integrating logic and probability theory. Thisearch was motivated by perceived limitations
of both formalisms. Logic has for long acted as the commomiggddor almost all research on knowledge
representation and reasoning in artificial intelligencet, yincertainty cannot be handled easily in logic.
Probabilistic graphical models have been proposed as fmme for reasoning with uncertainty, taking
probability theory as their foundation. Although their@sgted graphical representation allows specifying
relationship among objects in the domain of discourse satittis possible to reason about their statistical
dependences and independences, probabilistic graphacidimare essentially propositional in nature, and
they lack the representational richness of logics.

Several researchers have proposed probabilistic logatstierge the two types of languages in an at-
tempt to redress their individual shortcomings. A varietguach languages is now available, each of them
adopting a different view on the integration. Unfortungté appears that all of the available frameworks
are still restricted in one way or the other. For instancebpbilistic Horn logic, as originally proposed by
Poole in [4], offers a framework that was shown to be as paved Bayesian networks, yet it has the advan-
tage that it is a first-order language that integrates pridibad and logical reasoning in a seamless fashion.
However, usually the graphical representation associatéda Bayesian network does not offer a unique
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way to represent the independence information, which méieemterpretation of Bayesian networks cum-
bersome. Bayesian logic programs [1] have similar linotasias probabilistic Horn logic; in addition, they
are only proposed as formalisms to specify Bayesian nesiork logical way and reasoning is done in the
generated Bayesian networks. Finally, the framework ofddatogic networks [5] has been proposed as a
powerful language based on first-order logic to specify Manketworks. Yet, Markov networks are seen by
researchers in probabilistic graphical models as the vgaygee of such models, as much of the subtleties
of representing conditional dependence and independem®mtbe handled by Markov networks.

In this paper, we propose modifications and extensions togmitistic Horn logic, yielding a first-order
language that is more expressive than the languages medtadvove, in the sense that the probabilistic
models that can be specified and reasoned about have Bayesreorks and Markov networks as special
cases. This new probabilistic logic is calleldain logic

The organisation of this paper is as follows. In Section 2 vewigle an overview of the basic notions of
Horn clauses and chain graphs. Section 3 contains an irtioduo the chain logic language, with details
on its syntax and semantics. Finally, Section 4 containsgpenison to other work and Section 5 presents
our conclusions.

2 Preliminaries

2.1 Abduction Logic

Function-free Horn logic is a subset of first-order logic,osl formulae are constructed usiognstants
representing individual objects in the domaiariablesfor quantifying over individuals, angredicategor
representing relations among individuals. Predicatefeapfo a tuple of terms are called atomic formulae,
or atomsfor short. Formulae in Horn logic, callgdorn clauseshave the following form:

D« Bi,...,B,

whereD, By, ..., B,, are atomss— stands for logical implication and the commas ‘,’ stand fonjcanction.
Sets of Horn clauses are interpreted as conjunctions. Albkes appearing in a Horn clause areversally
quantified. D is called theheadand By, . . ., B,, constitutes théodyof the clause. When simultaneously
replacing all occurrences of variables in a Horn clatid®y constants, a so-callegoundformula results.

Abduction logicis defined as a special variant of function-free Horn logibeve the syntax of Horn
clauses is slightly modified, and- is given a causal interpretatiodbduction clausebave the following
form:

D<—B1,...7BHSR17...7Rm

where the predicates of the atof}sand B; are unary and the atonig;, calledtemplatesexpress relation-
ships among variables, where all variables appearing imtitvsD and B; occur in at least one template
R;. Atoms that do not occur as head of a clause are calstdmablesFrom a logical point of view, the
‘. operator has the meaning of a conjunction; it is only urséd in the syntax to allow separating atoms
that are templates from non-template atoms. The basic &dealise unary predicates to represent variables
(later referred to asandomvariables), and the templatéy to represent relations among those variables.

Abduction logic has a standard model-theoretic semanéfined in terms of the logical consequence
operatot=, and a sound and complete procedural semantics, definemiia ¢t the deduction relation, indi-
cated by+-. LetT be a set of abduction clauses, calledadmductive theoryn this paper, then, using model
theory or deduction,concluding formujafrom the theory is denoted i  » andT' |- v, respectively.

For abduction logic a special type of logical reasoning hasnbproposed, calleabduction which
is defined in terms of model theory or deduction using scedaikplanations Let A be the set of all
assumables and let’ denote the set of ground instancesAf Given a set of atomé), interpreted as
observationsthen these observations are explained in terms of the &feticeory and a set of assumables.

Definition 1. An explanationof a set of atom® based on the pai(T, A) is defined as a set of ground
assumableg/ C A’ satisfying the following conditions:

e TUH =0, and

e T'U H is consistent, i.eT UH F L.



Figure 1: Causal network model of causal and associatioral/ledge about influenza.

A minimal explanationd of O is an explanation whose proper subsets are not explanatib@s The set of
all minimal explanations is denoted By (O).

Consider the following example.

Example 1. Suppose that we have the following piece of medical knowlddfluenzal) causes coughing
(), where coughing is known as a possible cause for hoarséiBsdn addition, coughing is known to be
associated with dyspnoea (shortness of breaih), @lthough a clear cause-effect relationship is missing.
Dyspnoea restricts the oxygen supply to the blood circoitatthe resulting low oxygen saturation of the
blood will turn the skin to colour blueX), which is a condition called cyanosis. This qualitativewtedge

is represented by the causal network shown in Figure 1. Thecated abductive theof is the following:

H(z) « C(y) : rm.c(v,y)
B(x) « D(y) : r5,p(z,y)
C(x) « I(y) : rea(z,y),re,p(x, 2)
D(z) —:rep(y, x)

I(z) «:r(2)

where each of the variables hag, ¢} as domain. It now holds that:
T U {T](t), ’I’H,C(t, t), Tc_’](t, t), ’I"C7D(t, t)} E H(t)

andT U {T](t), ’I“H7c(t, f,), ’I“C,](t, t), ’I“C7D(t, t)} ¥ L.

The intuition behind the syntax of abduction clauses, ssafi(@&) < I(y) : rc.(x,y),rc,p(z, 2), iS
that C(x) <« I(y) expresses thpotentialexistence of a causal relation between the referred atoeig h
I(y) andC(z). Templatesk;, e. g.r¢ 1(z,y), expresses whether the relationship actually does or does n
hold. When there are no atoms to the left of the .’ operatoctsas in the claus®(z) —: r¢ p(z, z), the
template represents an association rather than a causaticei.

2.2 Chain Graphs

A chain graph (CG) is a probabilistic graphical model thatsists of labelled vertices, that stand for random
variables, connected by directed and undirected edges graphical representation allows chain graphs
to be considered as a framework that generalises both adisticted graph (ADG) models, i.e., Bayesian
networks, and undirected graph (UG) models, i.e., Markdwaiks [3]. The definitions with respect to
chain graphs given in this paper are in accordance with tzami[2].

Let G = (V, E) be ahybrid graph whereV” denotes the set afrticesand E the set ofedgeswhere an
edge is either aarc (directed edge), or kne (undirected edge). Let indexed lower case letters, e,qand
v9, indicate vertices of a chain graph. We denote an arc coimgeto vertices by— and a line by ~’
Consider two vertices; andwvs. If v — vy thenwv, is aparentof vy, If v; — v9 thenw; is aneighbourof
v9. The set of parents and neighbours of a vertexe denoted bya(v) andne(v), respectively.

A pathof lengthn in a hybrid graphi? = (V, E) is a sequence of distinct vertices, . . ., v,,, such that
eitherv; —v; 11 € Eorv; — v;41 € E. Adirected pathis a path which includes at least one arc, and where
all arcs have the same direction.cicleis a path where the first and last vertex are the sanwhatn graph
is a hybrid graph with the restriction that no directed cg@ist.

If there is an edge between every pair of vertices in a setmices, than this set is namedmplete A
cligueis a maximally complete subset. Now, consider the graphirdadafrom a chain graph by removing
all its arcs. What are left are vertices connected by lineecdahain componenisthe set of all chain
components is denoted here Gy



Associated to a chain gragh = (V, E) is a joint probability distribution?(Xy/) that is faithful to the
chain graph, i.e., it includes all the independence information repnésd in the graph. This is formally
expressed by the followinghain graph Markov property

P(Xy) =[] P(Xc | Xpac)) (1)
cecC

with V' = (s €, and where eack(X¢ | X,,.(¢)) factorises according to

P(XC ‘ Xpa(C)) = Z_l(Xpa(C)) H (p]W(X]\xT) (2)
MeM(C)

given that)M (C) is the complete set in the moral grapdbtained from the subgraiicypa(c) of G. The
functionsyp are real positive functions, callgebtentials they generalise joint probability distributions in the
sense that they need not be normalised.

Finally, the normalising factoZ is defined as

Z(Xpac)) =, ] em(Xnm) 3)

Xo MeM(C)

As a Bayesian network is a special case of a chain graph miedeégtion (1) simplifies in that case to:

P(Xy) = [] P(Xu Xpaw) (4)
veV

which is the well-known factorisation theorem of Bayesiatworks [2]. In this case, the chain components
are formed by a family of random variables. Therefore, faheaf those random variables the distribution
is defined as the conditional probability function of thisighle, given the value of its parents. Note that
according to Equation (1), chain graphs can also be interpi@s an ADG of chain components.

3 Chain Logic
3.1 Language Syntax

The formalism presented in this section is inspired by pbdistic Horn logic as introduced by Poole in
[4]. For the sake of simplicity, we assume here finite dompecsications. Furthermore, the unique names
assumption holds for the different constants of the domain.

Chain logic (CL) extends abduction logic as described irtiSe@.1 by interpreting templates as repre-
senting uncertain events. The actual definition of the uatdy is done by means ofweightdeclaration.
This is of the form

weight(ay : wy, ..., 4 : Wy) (5)

wherea; represents an atom amg € R7. The set of atoms appearing in such declarations are thenassu
ables, denoted byl. Here we assume that the atoms in a weight declaration dheusame variables. For
a grounded assumahiethe use of functiow(a) defines the weight that is associated to this assumable.
We require that a ground atoan— which is an instance of one of the assumables — does notrappea
instance of another assumable in another weight declaratio

In short, the weight declaration defines conjunctions afrstthat are mutually exclusive and exhaustive.
Therefore, together with the above elements, a CL speéditatso includes integrity constraint statements.
For instance, clauses of the form

L —a;Na; (6)

for any paira; anda; appearing in the same weight declaration wheeé j. Such clauses are implicit
in all of our given examples. We also allow the addition of tlueo set of constraints referring to a pair of
assumables appearing in different weight declarationsees in the example below.

IMoralisation encompasses: (1) adding lines between uncteth@arents of a chain component, and (2) conversion of atas i
lines by ignoring their directions.



Example 2. Consider the description given in Example 1. UncertaingggBned by replacing the templates
by potential functions. For the abductive theory in thisrapée, they are as follows:

wor | i i ecp | d d ouc | ¢ @ epp | d d o1 |
c 4 2 c 18 2 h 0.6 01 b 0.3 0.001 i | 0.1
c 1 10 c 5 2 h 04 0.9 b 0.7 0.999 i | 0.9

This example can be represented in chain logic using thevitlg abduction clauses:

I(x) «: pr(x) C(x) — I(y) : ecr(x,y) N pep(x, z)
D(y) < pcp(z,y) H(z) < C(y) : euc(z,y)
B(z) < D(y) : ¢sp(2,Y) L —wcr(z,y) A pop(T,2)

Furthermore, we can associate weights to the assumabl@sding to the potential functions. For instance,
consideringpcp, we have:

wez‘ght(@CD(tt) : 18,(,00D(t,f) : 27¢CD(f’ t) : 57<pCD(f’ f) : 2)

In order to be able to probabilistically interpret a CL the@i, a number of assumptions are added to those
of abduction logic:

1. the theory is acyclic: iff” is the set of ground instances of element§pft is possible to assign a
natural number to every ground atom such that for every nil€ ithe atoms in the body of the rule
are strictly less than the atom in the head,;

2. the rules for every ground non-assumable represent@d ame covering, i.e., there is always a rule
whose assumable holds — which is used as an explanation afdirein the head,;

3. the bodies of the rules it for an atom are mutually exclusive;
4. there is a set of ground assumables, one from every grdumeight declaration, consistent wiih

As in Poole’s probabilistic Horn logic, these assumptiores rzot intended to be enforced by the system:
it is up to the modeller to comply to these requisites. Untis tondition, we can then guarantee the
probabilistic properties of the theory, as we show in the sextion.

3.2 Probabilistic Reasoning

In this section, we show how we can infer probabilities froghain logic theory. A conjunction of ground
instances, one for each assumable of a grounded weightraléaty is called astate The set of all such
states is denoted by. The set ofconsistent statesvith respect to a theory, will be denoted byCS, i.e.,
CS={se S| TuU{s} ¥ L}. The last assumption mentioned in the previous section eaxpressed
formally by CS # @.

Definition 2. Let Py be a real positive function & that is defined as follow:

1 .
_ ) z1lacswla) ifseCS
Pr(s) = { 0 otherwise

whereZ = > g [,esw(a).

Clearly, the functionP; obeys the axioms of probability theory, as each weight gdiathan or equal to
and, given thaCS # @, it follows that) " _¢ Pr(s) = 1, and is thus a joint probability distributiod® is
sometimes abbreviated fin the following.

GivenT', a minimal explanatior of some formula) is equivalent to a disjunction of consistent states,
i.e.,T |=e=\,s; with s; € CS. As all s; are mutually exclusive, it follows that:

Pr(e) = PT(\/ si) = ZPT(S )

which offers the means to assign a probability to minimala@&xations. In order to assign a probability to a
formula, we have the following result.



Theorem 1. Under the assumptions mentioned in Section 3.4r(f)) is the set of minimal explanations
of the conjunction of atomg from the chain logic theor{’, then:

Prw)= 3 P(o)

e€lr(v)

Proof. This follows exactly the same line of reasoning of [4, page@8of of Theorem A.13]. O

This result shows thaP is indeed a probability distribution over conjunctions ofrfiulae if we use the
definition of P above. Other probabilities can be calculated on the bagisesk types of formulae, such
as conditional probabilities which can be calculated adiogyto the definition of conditional probabilities
P(alb) = P}(;EQ)”). Below, we will sometimes refer to the resulting probapitiistribution by P in order to
stress that we mean the probability calculated using D&fing.

Example 3. Reconsider the uncertainty specification concerning inftaeas described in Example 2. We
will illustrate how probabilities can be calculated frometiexplanations obtained from an abductive scheme.
Consider here that we are interested in calculating fA@3(¢)) (i.e., the probability ofB assumes truth-
valuet). Recalling the definitions provided in Section 2.1, we whiiae minimal explanations faB(t), i.e.,
Er(B(t)) as the set with the following members:

{eBp(t,t), pop(t,t)} {eBp(t,t), pon(f, 1)}
{eBp(t, f), pcp(t, )} {esp(t, f),ecp(f, )}

We can then sum over the states that are consistent with éxgéenations (by extending the explanations
with consistent instances of;, o, andy g ?):

P(Bt)= Y =27'03-18-01-4-1+03-18-09-2-1+0.3-5-0.1-1-1...) = 25.756/7
ecEr(D(t))

Notice that explanations are extended in order to incotpoother consistent influences. For instance,
reasoning about the probability &f being true might only include s in the explanations. Howevep
andy; — which are relevant for such computation — are also takendgotount.

3.3 Specification of Chain Graphs

In this section, we present the formal relation betweenrcheaaphs with discrete random variables and chain
logic. For the sake of simplicity, we focus on chain graphthwinary variables, i.e., the set of constants is
{t, f}, although the theory generalises to arbitrary arities. flementary constants are denoted with a bar,
ie.,.t=fandf =t.

The translation from a chain gragh to a chain logic theoryi” is as follows. Consider a vertexin
G. For each componeidt € C of G, there is a set of potential functions defined on the moraty the
sub-graphGcupa(cy Which containg. This set of potential functions is denoted ®yG, C, v). For every
vertexv, we have the following formula ifi™:

V(z) — N{V'(zw) [V €pa()}: N{om(@r,... ;... 20) | oar € (G, C,v)}

and we ensure that each of the predicates defined for the samem variable shares that variable in
the formula. However, this is not strictly necessary asedéht values for the same random variable in a
component is also disallowed by the integrity constraints.

The integrity constraints are defined as follows. If we have potential functions, namely am-ary
om(...,v,...)and anm-ary ¢, (..., v,...), i.e., which share a variablein the same chain component
(i.e., not between chain components), then we add the folgpformula toT":

L —on(moy sy zn) Ny (2o Ty )

for each variable that they share. As mentioned earlies,ghsures we do not generate explanations which
have inconsistent assignments to the random variablegwith same chain component.

Finally, for each potential functiop,,, we define a weight declaration containipg, (co, ..., c,) : w
|f SDM(XM = (CO, . 7Cn)) = Ww.

2Notice that{ s p (t,t)- e (t,t)-1(t)-cr(t,t)-eac(t, )} +{esp(t,t) - ecp(t,t)-wr(t)-por(t,t)-eac(f,t)} =
{eBD(t,t) - pop(t,t) @r(t) - pci(t, )}, aspuc(t,t) +euc(f,t) = 1.




Example 4. Consider again our influenza domain example. Consider éurthat we are interested in the
probability of P(I(t) | B(t)) (i.e., the conditional probability of being true given thaB is true). This
probability can be obtained by the havidi(1(¢) A B(t)) divided byP(B(t)). The calculation ofP(B(t))
was shown in Example 3. Therefore, we follow by calculati@rbinimal explanations faf(t) A B(t), i.e
Er(I(t) A B(t)) is a set with the following 4 members:

{wBD(t,1), pcp(t,t), or(t)} {eBp(t,t), 0on(fit), p1(t)}
{SOBD(tv f)’ (pCD(tv f)v @I(t)} {‘PBD(tv f)’ <)DC'D(fv f)7 @I(t)}

Following the same reasoning as before, we obtain fék(¢) A B(t)) = 2.32/Z. Finally, we have that
P(I(t) A B(t))/P(B(t) = (2.32/2)/(25.756/Z) ~ 0.09013.

In the following theorem, we establish that probabilitiedcalated from the chain logic theory corresponds
to the chain graph semantics.

Theorem 2. Supposev, ..., v, are vertices in a chain graph, witli" as the corresponding chain logic
theory by the translation described above, then:

P(X,, =c1,..., Xy, =cn) =Pr(Vi(c1),...,Valcn))

Proof. There is only one minimal explanation &f(c;) A --- A V,,(c,), namelygas (), ..., cM) for all
potential functions in cliques in the moral graphs of chaamponents with their parents, such that the
constants filled into the potential functions corresponth&ovalues for each of the random variables.

The explanation describes exactly one state. Denote this As the potential functions are related to
exactly one component, we have the following equation:

[[e =11 H K Xy=ch. Xy =)= I exEn) @

a€s cecC C( cl)es CeC MeM(C)

wherep® are potential functions defined for componéntand M (C) are the complete sets in the moral
graph from the sub-grapfcup.c)-

Let Z = ) ccsIlaes w(a). Since there are no integrity constraints between vasaiblehain com-
ponents (i.e., combinations of consistent potential fimmst which are in different chain components are
consistent), we have that:

2= Y [[e@=1] ¥ H m 0= Xy =) =[] 2Ky ®)

seCSa€s CeC seCs(0) ©5 C(c} Ll )es ceC

whereCS(C) is the set of consistent states (w.I). restricted to the potential functions in that chain com-
ponent. Then, the equivalence follows in the following way:

P(Xy, =c1,..., Xy, =¢n) = [loee P(Xc | Xparey) (factorisation)
=[lcee 27 (Xpae)) [arenrcy om(Xar): (factorisation)
= (Ileee 27 (Xpae))) Tece arerrcoy o (Xar)  (arithmetic)
=Z " oec [areni(c) om(Xnr)) (Eq. 8)
=72 [ieww(a) (Ea.7)
= PT(Vl (Cl), ey Vn(cn))) (def PT)

L

As we have shown in Section 3.2 that adheres to the axioms of probability theory, chain graplistaa
translated chain logic theory agree on all probabilitidsisTesult shows that chain graphs can be translated
to chain logic specifications. The converse is also true:ctadlin logic programs, which adhere to the
assumptions of Section 3.1, correspond to a chain grapheast in a trivial sense — as a fully connected
Markov network models and the associated probability ithistions, which can be derived from the chain
logic semantics. However, the independence informatiahighimplicit in the chain logic specification will
not be represented.

3Even though not used here, remember fhig calculated according to the set of consistent statesill éhe possible instantiations
of {¢, f} in the potential functions which satisfy the integrity craits and follows domain descriptions.



4 Related Work

As mentioned in Section 3.1, the language presented harsgseéd by Poole’s probabilistic Horn logic [4].
Besides some changes in the terminology (such as wsiightdeclarations in place dafisjoint ones), the
main differences in terms of syntax is the set of integritystaaints allowed and the probabilistic informa-
tion captured in each formalism. Also, in probabilistic Héogic the disjoint declarations should sum up to
1, whereas weights can sum up to any value. This enabled thefisation of potential functions instead
of a (normalised) probability distribution. In terms of ggendence, in Poole’s definition instantiations of
hypotheses that appear in different disjoint declarateoesndependent. In our case, by allowing the use of
extra integrity constraints, we are able to establish dépeces among such hypotheses (cf. Example 2).

In fact, those differences extend Poole’s approach andvalkto obtain a more generic probabilistic
model, being crucial for the representation of chain graplets. By using potential functions we can rep-
resent the quantitative influence between variables irgaeli The additional integrity constraints guarantee
that instantiations of those potentials functions appeasistently in each explanation.

Despite such differences, we still share with Poole’s apgines some assumptions and similar results,
for instance, with respect to the probability densitiesrdiover the theory. One additional assumption
in chain logic, namely assumption (4) in Section 3.1, is nefspnt in probabilistic Horn logic since this
property is true for any probabilistic Horn logic theory.

As a first-order language-based formalism for probakiligtiaphical models, we can also relate our
work to, for instance, Bayesian logic programs [1] and Markgic [5]. We present here a simple language
that can be used for the specification of both Bayesian an¢tdwaretwork models, in such a way that the
logical specification is more that a generative languagéhfermodel at hand, maintaining a close relation
between logical and probabilistic reasoning — without lofssxpressiveness.

5 Final Considerations

In this paper we presented a simple and yet powerful langtmgspecifying and reasoning about chain
graphs. Besides being able to incorporate both BayesiaMankiv network models as special cases, we
maintain a strong relation between logical and probahiligasoning.

Our language still presents some restrictions. First, vedinge set of constants, which prohibits the use
of continuous variables. For Markov logic networks, it hagi shown that special cases of such networks
can be extended to infinite domains by defining a Gibbs measweesets of interpretations for logical
formulae [6]. A similar approach could be taken here by defjrd measure over the set of consistent states.
Another limitation is the acyclicity assumption, which trégs the explicit representation of undirected
graphs components. Even though we require certain assamsftir a sound probabilistic interpretation,
weakening acyclicity seems feasible.

While we have shown in this paper that chain logic is powerfuugh to define and reason about
chain graphs, we have no strong reason to suspect that clgiing restricted to this class of probabilistic
graphical models. While chain graphs is a fairly generalsclaisgraphs, it might be the case that the
language is applicable to a broader set of graphs. Furthretmmmdelling the independence implied in chain
logic theories into a graphical model is an open questiohwviilbbe investigated further.
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