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Abstract

Probabilistic logics have attracted a great deal of attention during the past few years. Where logical
languages have, already from the inception of the field of artificial intelligence, taken a central position
in research on knowledge representation and automated reasoning, probabilistic graphical models with
their associated probabilistic basis have taken up in recent years a similar position when it comes to
reasoning with uncertainty. There are now several different proposals in literature to merge logic and
probabilistic graphical models. Probabilistic Horn logic combines Horn logicwith probability theory,
which yields a probabilistic logic that allows reasoning with classes of Bayesian networks. Bayesian
logic is similar in expressive power to probabilistic Horn logic; the main difference is that it is primarily
meant as a language for generating Bayesian networks. Finally, Markov logic networks have recently
been proposed as a language for generating Markov networks using amodel-theoretic interpretation of
a logical specification. However, whereas Bayesian networks have anattractive semantics, they suffer
from the fact that different Bayesian networks may represent exactly the same independence relation.
Markov networks, on the other hand, lack in expressiveness when representing independence information.
The formalism of chain graphs is increasingly seen as a natural probabilistic graphical formalism as it
generalises both Bayesian networks and Markov networks, and has anattractive semantics in the sense
that any Bayesian network has a unique graphical representation as a chain graph. In this paper, a new
probabilistic logic, called chain logic, is developed along the lines of probabilistic Horn logic. This new
probabilistic logic allows representing subtle independence information thatcannot be represented by all
previously developed probabilistic logics.

1 Introduction

There has been a considerable amount of work in the field of artificial intelligence during the past two
decades on integrating logic and probability theory. This research was motivated by perceived limitations
of both formalisms. Logic has for long acted as the common ground for almost all research on knowledge
representation and reasoning in artificial intelligence; yet, uncertainty cannot be handled easily in logic.
Probabilistic graphical models have been proposed as formalisms for reasoning with uncertainty, taking
probability theory as their foundation. Although their associated graphical representation allows specifying
relationship among objects in the domain of discourse such that it is possible to reason about their statistical
dependences and independences, probabilistic graphical models are essentially propositional in nature, and
they lack the representational richness of logics.

Several researchers have proposed probabilistic logics that merge the two types of languages in an at-
tempt to redress their individual shortcomings. A variety of such languages is now available, each of them
adopting a different view on the integration. Unfortunately, it appears that all of the available frameworks
are still restricted in one way or the other. For instance, probabilistic Horn logic, as originally proposed by
Poole in [4], offers a framework that was shown to be as powerful as Bayesian networks, yet it has the advan-
tage that it is a first-order language that integrates probabilistic and logical reasoning in a seamless fashion.
However, usually the graphical representation associatedwith a Bayesian network does not offer a unique
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way to represent the independence information, which makesthe interpretation of Bayesian networks cum-
bersome. Bayesian logic programs [1] have similar limitations as probabilistic Horn logic; in addition, they
are only proposed as formalisms to specify Bayesian networks in a logical way and reasoning is done in the
generated Bayesian networks. Finally, the framework of Markov logic networks [5] has been proposed as a
powerful language based on first-order logic to specify Markov networks. Yet, Markov networks are seen by
researchers in probabilistic graphical models as the weakest type of such models, as much of the subtleties
of representing conditional dependence and independence cannot be handled by Markov networks.

In this paper, we propose modifications and extensions to probabilistic Horn logic, yielding a first-order
language that is more expressive than the languages mentioned above, in the sense that the probabilistic
models that can be specified and reasoned about have Bayesiannetworks and Markov networks as special
cases. This new probabilistic logic is calledchain logic.

The organisation of this paper is as follows. In Section 2 we provide an overview of the basic notions of
Horn clauses and chain graphs. Section 3 contains an introduction to the chain logic language, with details
on its syntax and semantics. Finally, Section 4 contains a comparison to other work and Section 5 presents
our conclusions.

2 Preliminaries

2.1 Abduction Logic

Function-free Horn logic is a subset of first-order logic, whose formulae are constructed usingconstants
representing individual objects in the domain,variablesfor quantifying over individuals, andpredicatesfor
representing relations among individuals. Predicates applied to a tuple of terms are called atomic formulae,
or atomsfor short. Formulae in Horn logic, calledHorn clauses, have the following form:

D ← B1, . . . , Bn

whereD,B1, . . . , Bn are atoms,← stands for logical implication and the commas ‘,’ stand for conjunction.
Sets of Horn clauses are interpreted as conjunctions. All variables appearing in a Horn clause areuniversally
quantified.D is called theheadandB1, . . . , Bn constitutes thebodyof the clause. When simultaneously
replacing all occurrences of variables in a Horn clauseψ by constants, a so-calledgroundformula results.

Abduction logicis defined as a special variant of function-free Horn logic, where the syntax of Horn
clauses is slightly modified, and← is given a causal interpretation.Abduction clauseshave the following
form:

D ← B1, . . . , Bn : R1, . . . , Rm

where the predicates of the atomsD andBi are unary and the atomsRj , calledtemplates, express relation-
ships among variables, where all variables appearing in theatomsD andBi occur in at least one template
Rj . Atoms that do not occur as head of a clause are calledassumables. From a logical point of view, the
‘:’ operator has the meaning of a conjunction; it is only included in the syntax to allow separating atoms
that are templates from non-template atoms. The basic idea is to use unary predicates to represent variables
(later referred to asrandomvariables), and the templatesRj to represent relations among those variables.

Abduction logic has a standard model-theoretic semantic, defined in terms of the logical consequence
operator�, and a sound and complete procedural semantics, defined in terms of the deduction relation, indi-
cated by⊢. Let T be a set of abduction clauses, called anabductive theoryin this paper, then, using model
theory or deduction,concluding formulaψ from the theory is denoted byT � ψ andT ⊢ ψ, respectively.

For abduction logic a special type of logical reasoning has been proposed, calledabduction, which
is defined in terms of model theory or deduction using so-called explanations. Let A be the set of all
assumables and letA′ denote the set of ground instances ofA. Given a set of atomsO, interpreted as
observations, then these observations are explained in terms of the abductive theory and a set of assumables.

Definition 1. An explanationof a set of atomsO based on the pair〈T,A〉 is defined as a set of ground
assumablesH ⊆ A′ satisfying the following conditions:

• T ∪H |= O, and

• T ∪H is consistent, i.e.,T ∪H 6� ⊥.
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Figure 1: Causal network model of causal and associational knowledge about influenza.

A minimal explanationH ofO is an explanation whose proper subsets are not explanationsofO. The set of
all minimal explanations is denoted byET (O).

Consider the following example.

Example 1. Suppose that we have the following piece of medical knowledge. Influenza (I) causes coughing
(C), where coughing is known as a possible cause for hoarseness(H). In addition, coughing is known to be
associated with dyspnoea (shortness of breath) (D), although a clear cause-effect relationship is missing.
Dyspnoea restricts the oxygen supply to the blood circulation; the resulting low oxygen saturation of the
blood will turn the skin to colour blue (B), which is a condition called cyanosis. This qualitative knowledge
is represented by the causal network shown in Figure 1. The associated abductive theoryT is the following:

H(x)← C(y) : rH,C(x, y)
B(x)← D(y) : rB,D(x, y)
C(x)← I(y) : rC,I(x, y), rC,D(x, z)
D(x)←: rC,D(y, x)
I(x)←: rI(x)

where each of the variables has{f, t} as domain. It now holds that:

T ∪ {rI(t), rH,C(t, t), rC,I(t, t), rC,D(t, t)} � H(t)

andT ∪ {rI(t), rH,C(t, t), rC,I(t, t), rC,D(t, t)} 2 ⊥.
The intuition behind the syntax of abduction clauses, such asC(x) ← I(y) : rC,I(x, y), rC,D(x, z), is

thatC(x) ← I(y) expresses thepotentialexistence of a causal relation between the referred atoms, here
I(y) andC(x). TemplatesRi, e. g.rC,I(x, y), expresses whether the relationship actually does or does not
hold. When there are no atoms to the left of the ‘:’ operator, such as in the clauseD(x)←: rC,D(z, x), the
template represents an association rather than a causal relation.

2.2 Chain Graphs

A chain graph (CG) is a probabilistic graphical model that consists of labelled vertices, that stand for random
variables, connected by directed and undirected edges. This graphical representation allows chain graphs
to be considered as a framework that generalises both acyclic directed graph (ADG) models, i.e., Bayesian
networks, and undirected graph (UG) models, i.e., Markov networks [3]. The definitions with respect to
chain graphs given in this paper are in accordance with Lauritzen [2].

LetG = (V,E) be ahybrid graph, whereV denotes the set ofverticesandE the set ofedges, where an
edge is either anarc (directed edge), or aline (undirected edge). Let indexed lower case letters, e.g.,v1 and
v2, indicate vertices of a chain graph. We denote an arc connecting two vertices by→ and a line by ‘−’.
Consider two verticesv1 andv2. If v1 → v2 thenv1 is aparentof v2. If v1 − v2 thenv1 is aneighbourof
v2. The set of parents and neighbours of a vertexv are denoted bypa(v) andne(v), respectively.

A pathof lengthn in a hybrid graphG = (V,E) is a sequence of distinct verticesv1, . . . , vn, such that
eithervi−vi+1 ∈ E or vi → vi+1 ∈ E. A directed pathis a path which includes at least one arc, and where
all arcs have the same direction. Acycleis a path where the first and last vertex are the same. Achain graph
is a hybrid graph with the restriction that no directed cycles exist.

If there is an edge between every pair of vertices in a set of vertices, than this set is namedcomplete. A
clique is a maximally complete subset. Now, consider the graph obtained from a chain graph by removing
all its arcs. What are left are vertices connected by lines, called chain components; the set of all chain
components is denoted here byC.



Associated to a chain graphG = (V,E) is a joint probability distributionP (XV ) that is faithful to the
chain graphG, i.e., it includes all the independence information represented in the graph. This is formally
expressed by the followingchain graph Markov property:

P (XV ) =
∏

C∈C

P (XC | Xpa(C)) (1)

with V =
⋃

C∈C
C, and where eachP (XC | Xpa(C)) factorises according to

P (XC | Xpa(C)) = Z−1(Xpa(C))
∏

M∈M(C)

ϕM (XM ) (2)

given thatM(C) is the complete set in the moral graph1 obtained from the subgraphGC∪pa(C) of G. The
functionsϕ are real positive functions, calledpotentials; they generalise joint probability distributions in the
sense that they need not be normalised.

Finally, the normalising factorZ is defined as

Z(Xpa(C)) =
∑

XC

∏

M∈M(C)

ϕM (XM ) (3)

As a Bayesian network is a special case of a chain graph model,Equation (1) simplifies in that case to:

P (XV ) =
∏

v∈V

P (Xv|Xpa(v)) (4)

which is the well-known factorisation theorem of Bayesian networks [2]. In this case, the chain components
are formed by a family of random variables. Therefore, for each of those random variables the distribution
is defined as the conditional probability function of this variable, given the value of its parents. Note that
according to Equation (1), chain graphs can also be interpreted as an ADG of chain components.

3 Chain Logic

3.1 Language Syntax

The formalism presented in this section is inspired by probabilistic Horn logic as introduced by Poole in
[4]. For the sake of simplicity, we assume here finite domain specifications. Furthermore, the unique names
assumption holds for the different constants of the domain.

Chain logic (CL) extends abduction logic as described in Section 2.1 by interpreting templates as repre-
senting uncertain events. The actual definition of the uncertainty is done by means of aweightdeclaration.
This is of the form

weight(a1 : w1, . . . , an : wn) (5)

whereai represents an atom andwi ∈ R
+
0 . The set of atoms appearing in such declarations are the assum-

ables, denoted byA. Here we assume that the atoms in a weight declaration share the same variables. For
a grounded assumablea, the use of functionω(a) defines the weightw that is associated to this assumable.
We require that a ground atoma – which is an instance of one of the assumables – does not appear as an
instance of another assumable in another weight declaration.

In short, the weight declaration defines conjunctions of atoms that are mutually exclusive and exhaustive.
Therefore, together with the above elements, a CL specification also includes integrity constraint statements.
For instance, clauses of the form

⊥ ← ai ∧ aj (6)

for any pairai andaj appearing in the same weight declaration wherei 6= j. Such clauses are implicit
in all of our given examples. We also allow the addition of another set of constraints referring to a pair of
assumables appearing in different weight declarations, asseen in the example below.

1Moralisation encompasses: (1) adding lines between unconnected parents of a chain component, and (2) conversion of arcs into
lines by ignoring their directions.



Example 2. Consider the description given in Example 1. Uncertainty isdefined by replacing the templates
by potential functions. For the abductive theory in this example, they are as follows:
ϕCI i ī
c 4 2
c̄ 1 10

ϕCD d d̄
c 18 2
c̄ 5 2

ϕHC c c̄
h 0.6 0.1
h̄ 0.4 0.9

ϕBD d d̄
b 0.3 0.001
b̄ 0.7 0.999

ϕI
i 0.1
ī 0.9

This example can be represented in chain logic using the following abduction clauses:

I(x)←: ϕI(x) C(x)← I(y) : ϕCI(x, y) ∧ ϕCD(x, z)
D(y)←: ϕCD(x, y) H(x)← C(y) : ϕHC(x, y)
B(x)← D(y) : ϕBD(x, y) ⊥ ← ϕCI(x, y) ∧ ϕCD(x̄, z)

Furthermore, we can associate weights to the assumables according to the potential functions. For instance,
consideringϕCD, we have:

weight(ϕCD(t, t) : 18, ϕCD(t, f) : 2, ϕCD(f, t) : 5, ϕCD(f, f) : 2)

In order to be able to probabilistically interpret a CL theory T , a number of assumptions are added to those
of abduction logic:

1. the theory is acyclic: ifT ′ is the set of ground instances of elements ofT , it is possible to assign a
natural number to every ground atom such that for every rule in T ′ the atoms in the body of the rule
are strictly less than the atom in the head;

2. the rules for every ground non-assumable represented inT ′ are covering, i.e., there is always a rule
whose assumable holds – which is used as an explanation of theatom in the head;

3. the bodies of the rules inT ′ for an atom are mutually exclusive;

4. there is a set of ground assumables, one from every grounded weight declaration, consistent withT .

As in Poole’s probabilistic Horn logic, these assumptions are not intended to be enforced by the system:
it is up to the modeller to comply to these requisites. Under this condition, we can then guarantee the
probabilistic properties of the theory, as we show in the next section.

3.2 Probabilistic Reasoning

In this section, we show how we can infer probabilities from achain logic theory. A conjunction of ground
instances, one for each assumable of a grounded weight declaration, is called astate. The set of all such
states is denoted byS. The set ofconsistent states, with respect to a theoryT , will be denoted byCS, i.e.,
CS = {s ∈ S | T ∪ {s} 2 ⊥}. The last assumption mentioned in the previous section can be expressed
formally byCS 6= ∅.

Definition 2. LetPT be a real positive function ofS that is defined as follow:

PT (s) =

{

1
Z

∏

a∈s ω(a) if s ∈ CS
0 otherwise

whereZ =
∑

s∈CS

∏

a∈s ω(a).

Clearly, the functionPT obeys the axioms of probability theory, as each weight is larger than or equal to0
and, given thatCS 6= ∅, it follows that

∑

s∈S PT (s) = 1, and is thus a joint probability distribution;PT is
sometimes abbreviated toP in the following.

GivenT , a minimal explanatione of some formulaψ is equivalent to a disjunction of consistent states,
i.e.,T |= e ≡

∨

i si with si ∈ CS. As all si are mutually exclusive, it follows that:

PT (e) = PT (
∨

i

si) =
∑

i

PT (si)

which offers the means to assign a probability to minimal explanations. In order to assign a probability to a
formula, we have the following result.



Theorem 1. Under the assumptions mentioned in Section 3.1, ifET (ψ) is the set of minimal explanations
of the conjunction of atomsψ from the chain logic theoryT , then:

PT (ψ) =
∑

e∈ET (ψ)

P (e)

Proof. This follows exactly the same line of reasoning of [4, page 53, proof of Theorem A.13].

This result shows thatP is indeed a probability distribution over conjunctions of formulae if we use the
definition ofPT above. Other probabilities can be calculated on the basis ofthese types of formulae, such
as conditional probabilities which can be calculated according to the definition of conditional probabilities
P (a|b) = P (a∧b)

P (b) . Below, we will sometimes refer to the resulting probability distribution byPT in order to
stress that we mean the probability calculated using Definition 2.

Example 3. Reconsider the uncertainty specification concerning influenza as described in Example 2. We
will illustrate how probabilities can be calculated from the explanations obtained from an abductive scheme.
Consider here that we are interested in calculating theP (B(t)) (i.e., the probability ofB assumes truth-
valuet). Recalling the definitions provided in Section 2.1, we obtain the minimal explanations forB(t), i.e.,
ET (B(t)) as the set with the following4 members:

{ϕBD(t, t), ϕCD(t, t)} {ϕBD(t, t), ϕCD(f, t)}
{ϕBD(t, f), ϕCD(t, f)} {ϕBD(t, f), ϕCD(f, f)}

We can then sum over the states that are consistent with theseexplanations (by extending the explanations
with consistent instances ofϕI , ϕCI , andϕHC2):

P (B(t)) =
∑

e∈ET (D(t))

= Z−1(0.3 · 18 · 0.1 · 4 · 1 + 0.3 · 18 · 0.9 · 2 · 1 + 0.3 · 5 · 0.1 · 1 · 1 . . .) = 25.756/Z

Notice that explanations are extended in order to incorporate other consistent influences. For instance,
reasoning about the probability ofB being true might only includeϕBD in the explanations. However,ϕCI
andϕI – which are relevant for such computation – are also taken into account.

3.3 Specification of Chain Graphs

In this section, we present the formal relation between chain graphs with discrete random variables and chain
logic. For the sake of simplicity, we focus on chain graphs with binary variables, i.e., the set of constants is
{t, f}, although the theory generalises to arbitrary arities. Complementary constants are denoted with a bar,
i.e., t̄ = f andf̄ = t.

The translation from a chain graphG to a chain logic theoryT is as follows. Consider a vertexv in
G. For each componentC ∈ C of G, there is a set of potential functions defined on the moral graph of the
sub-graphGC∪pa(C) which containsv. This set of potential functions is denoted byΦ(G,C, v). For every
vertexv, we have the following formula inT :

V (x)←
∧

{V ′(xv′) | v
′ ∈ pa(v)} :

∧

{ϕM (x1, . . . , x, . . . , xn) | ϕM ∈ Φ(G,C, v)}

and we ensure that each of the predicates defined for the same random variable shares that variable in
the formula. However, this is not strictly necessary as different values for the same random variable in a
component is also disallowed by the integrity constraints.

The integrity constraints are defined as follows. If we have two potential functions, namely ann-ary
ϕM (. . . , v, . . .) and anm-aryϕ′

M (. . . , v, . . .), i.e., which share a variablev in the same chain component
(i.e., not between chain components), then we add the following formula toT :

⊥ ← ϕM (x0, . . . , x, . . . , xn) ∧ ϕ
′
M (x′0 . . . , x̄, . . . , x

′
m)

for each variable that they share. As mentioned earlier, this ensures we do not generate explanations which
have inconsistent assignments to the random variables within the same chain component.

Finally, for each potential functionϕM , we define a weight declaration containingϕM (c0, . . . , cn) : w
if ϕM (XM = (c0, . . . , cn)) = w.

2Notice that{ϕBD(t, t) ·ϕCD(t, t) ·ϕI(t) ·ϕCI(t, t) ·ϕHC(t, t)}+{ϕBD(t, t) ·ϕCD(t, t) ·ϕI(t) ·ϕCI(t, t) ·ϕHC(f, t)} =
{ϕBD(t, t) · ϕCD(t, t) · ϕI(t) · ϕCI(t, t)}, asϕHC(t, t) + ϕHC(f, t) = 1.



Example 4. Consider again our influenza domain example. Consider further that we are interested in the
probability ofP (I(t) | B(t)) (i.e., the conditional probability ofI being true given thatB is true). This
probability can be obtained by the havingP (I(t) ∧B(t)) divided byP (B(t)). The calculation ofP (B(t))
was shown in Example 3. Therefore, we follow by calculation the minimal explanations forI(t)∧B(t), i.e.,
ET (I(t) ∧B(t)) is a set with the following 4 members:

{ϕBD(t, t), ϕCD(t, t), ϕI(t)} {ϕBD(t, t), ϕCD(f, t), ϕI(t)}
{ϕBD(t, f), ϕCD(t, f), ϕI(t)} {ϕBD(t, f), ϕCD(f, f), ϕI(t)}

Following the same reasoning as before, we obtain thatP (I(t) ∧ B(t)) = 2.32/Z. Finally, we have that
P (I(t) ∧B(t))/P (B(t) = (2.32/Z)/(25.756/Z) ≃ 0.09013.

In the following theorem, we establish that probabilities calculated from the chain logic theory corresponds
to the chain graph semantics.

Theorem 2. Supposev1, . . . , vn are vertices in a chain graph, withT as the corresponding chain logic
theory by the translation described above, then:

P (Xv1 = c1, . . . ,Xvn
= cn) = PT (V1(c1), . . . , Vn(cn))

Proof. There is only one minimal explanation ofV1(c1) ∧ · · · ∧ Vn(cn), namelyϕM (cM0 , . . . , cMm ) for all
potential functions in cliques in the moral graphs of chain components with their parents, such that the
constants filled into the potential functions correspond tothe values for each of the random variables.

The explanation describes exactly one state. Denote this ass. As the potential functions are related to
exactly one component, we have the following equation:

∏

a∈s

ω(a) =
∏

C∈C

∏

ϕC
j

(cj
0
,...,c

j
n)∈s

ϕCj (X
v

j
0

= cj0, . . . ,Xv
j
n

= cjn) =
∏

C∈C

∏

M∈M(C)

ϕM (XM ) (7)

whereϕC are potential functions defined for componentC andM(C) are the complete sets in the moral
graph from the sub-graphGC∪pa(C).

Let Z =
∑

s∈CS

∏

a∈s ω(a). Since there are no integrity constraints between variables in chain com-
ponents (i.e., combinations of consistent potential functions which are in different chain components are
consistent), we have that:

Z =
∑

s∈CS

∏

a∈s

ω(a) =
∏

C∈C

∑

s∈CS(C)

∏

ϕC
j

(cj
0
,...,c

j
n)∈s

ϕCj (X
v

j
0

= cj0, . . . ,Xv
j
n

= cjn) =
∏

C∈C

Z(Xpa(C)) (8)

whereCS(C) is the set of consistent states (w.r.t.T ) restricted to the potential functions in that chain com-
ponent. Then, the equivalence follows in the following way:

P (Xv1 = c1, . . . ,Xvn
= cn) =

∏

C∈C
P (XC | Xpa(C)) (factorisation)

=
∏

C∈C
Z−1(Xpa(C))

∏

M∈M(C) ϕM (XM )· (factorisation)
=

(
∏

C∈C
Z−1(Xpa(C))

)
∏

C∈C

∏

M∈M(C) ϕM (XM ) (arithmetic)
= Z−1

∏

C∈C

∏

M∈M(C) ϕM (XM )) (Eq. 8)
= Z−1

∏

a∈w ω(a) (Eq. 7)
= PT (V1(c1), . . . , Vn(cn))) (def.PT )

As we have shown in Section 3.2 thatPT adheres to the axioms of probability theory, chain graphs and the
translated chain logic theory agree on all probabilities. This result shows that chain graphs can be translated
to chain logic specifications. The converse is also true: allchain logic programs, which adhere to the
assumptions of Section 3.1, correspond to a chain graph – at least in a trivial sense – as a fully connected
Markov network models and the associated probability distributions, which can be derived from the chain
logic semantics. However, the independence information that is implicit in the chain logic specification will
not be represented.

3Even though not used here, remember thatZ is calculated according to the set of consistent states, i. e., all the possible instantiations
of {t, f} in the potential functions which satisfy the integrity constraints and follows domain descriptions.



4 Related Work

As mentioned in Section 3.1, the language presented here is inspired by Poole’s probabilistic Horn logic [4].
Besides some changes in the terminology (such as usingweightdeclarations in place ofdisjoint ones), the
main differences in terms of syntax is the set of integrity constraints allowed and the probabilistic informa-
tion captured in each formalism. Also, in probabilistic Horn logic the disjoint declarations should sum up to
1, whereas weights can sum up to any value. This enabled the formalisation of potential functions instead
of a (normalised) probability distribution. In terms of independence, in Poole’s definition instantiations of
hypotheses that appear in different disjoint declarationsare independent. In our case, by allowing the use of
extra integrity constraints, we are able to establish dependences among such hypotheses (cf. Example 2).

In fact, those differences extend Poole’s approach and allow us to obtain a more generic probabilistic
model, being crucial for the representation of chain graph models. By using potential functions we can rep-
resent the quantitative influence between variables in a clique. The additional integrity constraints guarantee
that instantiations of those potentials functions appear consistently in each explanation.

Despite such differences, we still share with Poole’s approaches some assumptions and similar results,
for instance, with respect to the probability densities defined over the theory. One additional assumption
in chain logic, namely assumption (4) in Section 3.1, is not present in probabilistic Horn logic since this
property is true for any probabilistic Horn logic theory.

As a first-order language-based formalism for probabilistic graphical models, we can also relate our
work to, for instance, Bayesian logic programs [1] and Markov logic [5]. We present here a simple language
that can be used for the specification of both Bayesian and Markov network models, in such a way that the
logical specification is more that a generative language forthe model at hand, maintaining a close relation
between logical and probabilistic reasoning – without lossof expressiveness.

5 Final Considerations

In this paper we presented a simple and yet powerful languagefor specifying and reasoning about chain
graphs. Besides being able to incorporate both Bayesian andMarkov network models as special cases, we
maintain a strong relation between logical and probabilistic reasoning.

Our language still presents some restrictions. First, we use finite set of constants, which prohibits the use
of continuous variables. For Markov logic networks, it has been shown that special cases of such networks
can be extended to infinite domains by defining a Gibbs measureover sets of interpretations for logical
formulae [6]. A similar approach could be taken here by defining a measure over the set of consistent states.
Another limitation is the acyclicity assumption, which restricts the explicit representation of undirected
graphs components. Even though we require certain assumptions for a sound probabilistic interpretation,
weakening acyclicity seems feasible.

While we have shown in this paper that chain logic is powerful enough to define and reason about
chain graphs, we have no strong reason to suspect that chain logic is restricted to this class of probabilistic
graphical models. While chain graphs is a fairly general class of graphs, it might be the case that the
language is applicable to a broader set of graphs. Furthermore, modelling the independence implied in chain
logic theories into a graphical model is an open question that will be investigated further.
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