
Requirements for Complex Systems Modeling

 Revision February 2008
T.J. van Beek1, T. Tomiyama1

1Intelligent Mechanical Systems group, Department of Mechanical Engineering,
Delft University of Technology, Delft, the Netherlands

 Abstract
Function modeling (FM) is the name given to the activity of developing models of
devices/products/objects/processes based on their functionalities. Problems still exist in the design
processes of complex systems which FM claims to address. Fundamental to these problems is the lack of
system overview models. FM theories address issues including knowledge representation problems in
product development, overall description and better understanding of complex systems. This paper
investigates and analyzes why FM is not used in industry. It will indicate some weaknesses and
shortcomings in FM theories and industry which need to be addressed in future research.

Keywords:
function modeling, system overview, complex systems

1 INTRODUCTION
Creating better design quality of high tech mechatronic
products in less available design time is the aim of many
companies. Accomplishing it is not a trivial task in a
product development process with growing complexity.
This research aims at improving the design process of
complex, mechatronic systems. Complexity is present and
causes problems in different aspects of the product
development process. Therefore active complexity
management in engineering design is essential but it has
not yet been satisfactorily addressed in literature and
practice [1].
The first cause of complexity in high tech mechatronic
products is that they are characterized by a multi
disciplinary nature. Conventional engineering disciplines
such as mechanical, electronics, electrical and informatics
are combined to create products capable of developing
better and faster than conventional, mono disciplinary
products. Managing and coordinating this multi
disciplinary product development process is extremely
difficult [2].
The size of products, product design processes and
organizations is a second source of complexity in product
development. Both the market pull by the user and the
technology push drive products to incorporate more and
more functionality and components. To create these
products, the design processes and development
organizations have also grown. Large industrial
companies often have to manage their design process
that is spread over a number of sites around the world
with hundreds of product developers working on the same
projects [3].
Lindemann and Maurer [1] recognize that controlling
product complexity has become an important issue in
product development and they state that although
reducing complexity is purposeful, it is not favorable to
reduce it at any cost. They introduce a methodology to
control complexity consisting of a system definition phase
that identifies the domains, multi-domain analysis phase

where intra-domain networks are identified in the form of
matrices and finally analysis of the selected networks
using criteria based on graph theory.
Clarkson et al. [4] recognize the importance of dealing
with changes in the design of complex systems like a
helicopter. They developed a method for predicting and
managing change in designs following new requirements
based on design structure matrices.
This industrial research into difficulties experienced
during product development, related to complexity,
indicates problems in managing the above described
complexity in the daily product development processes.
The first symptom observed is poor predictability of the
consequences following certain design choices. Since no
product development process starts from scratch, the
starting point of each process is an existing product which
will have added or changed functionality. Predicting the
consequences of proposed changes in the product
architecture has proven to become difficult or even
impossible.
Problems in choosing a good system decomposition of
the product into convenient modules or sub systems is
the second symptom which indicates a complexity issue.
System architects choose the interfaces for the high
number of sub systems based on their expertise and
experience but they do not have a good way of evaluating
their choices.
As a third symptom we mention here the increasing
number of unexpected and unforeseen problems during
the test phase of the complex products. Similar to the first
two, this third symptom also results in an increased time
to market of the product.
This paper analyses the symptoms of complex product
development difficulties identified in an industrial
observation. An FM approach is proposed to improve
design support for complex system architects in the
conceptual stage of the design. The aim of this paper is to
identify requirements for modelling complex systems with
an FM approach.

CIRP Design Conference 2008

In section 2 this paper discusses observations done in
industry that indicate product development difficulties.
Section 3 will discuss FM and how FM can be used to
address the observed industrial problems. Section 4
concludes this paper and gives a brief description of the
future work in this research.

2 OBSERVATIONS IN INDUSTRIAL PRACTICE
This paper investigated and analyzed problems in the
process of adding new features to existing complex
system architectures. Depending on the needs and nature
of these new features it has to be decided by the system
architects whether it will be implemented as a separate
sub system, or as an integrated part of the existing main
system. This decision process is a part of system
decomposition tasks and interface management. The goal
of this system decomposition process is to create an
engineering decomposition of the product that fulfills the
high level needs of the user.
In the introduction of this paper we discussed three
symptoms that indicate problems in the system
decomposition process, namely:
 • Difficulty in predicting and evaluating consequences of

proposed system changes.
 • Difficulty in creating a total system decomposition that

supports the newly added features and does not
compromise other features.

 • The increased time to market resulting from
unexpected problems and more time needed then
expected for testing and problem solving.

2.1 Experienced difficulties
Design understanding and traceability
The process of adding features to an existing product
often starts at high level of system abstraction. Typically
the market analysis shows that there is a need in the
market for a certain feature and that it is a good business
opportunity to address this need. The top level
management then makes the decision to create a product
that fulfils the need. Consulting different sections of their
organization like research and development, marketing
and engineering departments, the product development
process is started.
In the first phase of the project the needs are made clear.
In this phase the project team is relatively small and

consists of members from different disciplines within the
organization. Typical methods for communication used in
this phase are workshops and meetings. These sessions
result in a high level description of what the new system
should do (functions) and how well it should do its task
(requirements). Typically these descriptions are captured
in specification documents and spreadsheets.
After this first phase the number of people involved
increases and the work is divided among them. The
product description transforms from abstract concepts at
first to detailed component descriptions in the end (lines
of code, 3D CAD models, Finite Element Analysis mesh
and design documentation).
The transitions from one level of abstraction to another
often are bidirectional, iterative processes. Because of
the large amount of design knowledge, good traceability
of the relations between design aspects in different levels
of abstraction is difficult to realize in complex multi
disciplinary design processes. There is a need for better
traceability of design requirements and system
decomposition choices [5]. Improved traceability will help
evaluate the consequences of architectural choices when
features are added to the system.
Both the size of the knowledge embedded in the
designed product and the knowledge gathered in the
design process is growing. The size of the problems has
grown beyond the limits of one person’s comprehension
[6]. In our research it is estimated that maybe 0.5 % of all
employees have a total system overview. And even then
with a strong focus around their expertise. Not
understanding the system you are working with is a
source of uncertainty and errors in the design. The need
for better system understanding was recognized by
system architects as one of the most important issues in
modern day engineering.

System Decomposition
System decomposition and interface management are
two of the main activities of complex system architects.
They need to decompose the system into smaller sub
systems. The goal of this activity usually is to create sub
systems which are relatively independent of other sub
systems. With a proper decomposition it is possible to
create independent sub systems that have their own
development cycles. Where two sub systems meet an
interface should be defined. Ideally these interfaces are
independent of the sub systems implementation. Creating

Abstract,
function level

Multi-Disciplinary,
Systems and behavioral level

Mono-Disciplinary,
components level

N
r.

of
 d

et
ai

ls
 in

 s
ys

te
m

 d
es

cr
ip

tio
n

100

101

102

103

104

105

106

Current situation: Desired situation:

a.) Unclear view on system properties and relations b.) Clear view on system properties and relations

Figure 1 Schematic representation of system complexity

unexpected
relation

an ideal interface description for one sub system often
conflicts with the ideal interface for another sub system. It
was observed that navigating through the product
configuration space is very difficult without methods and
tools that assist the architects.

2.2 Bird’s-eye View
To increase design traceability we need models of
complex systems that connect high levels of abstraction to
detailed levels of abstraction. Most models used now, do
not span different levels of abstractions. Most models
used now, do not span different levels of abstractions [7].
For example, a mechanical 3D CAD concerns only
shapes and assembly of components, and does not link to
functional information. The requirement specification
sheets for example are models made for different levels of
abstractions, but in a discrete manner. A requirement
spec. sheet is made for the product at different levels, but
it is not really combined into one traceable knowledge
carrier covering the complete product development.
Changing this will help architects in better evaluation of
their choices.
To increase system understanding a map (figure 1) is
needed that communicates the system composition and
outline to the architects. A modern high tech product
typically has details that reach O(106). For example, an
aircraft has unique components of this order. Complex
mechatronic machines (such as mobile phones, medical
systems, hybrid car) are controlled by software that has
number of lines in the same order of magnitude. At the top
level there are abstract functional descriptions. At the
bottom, component details of that order are needed, but at
this level descriptions are very much mono-disciplinary
and their complexity is high but manageable if engineers
are provided with good tools. However, the middle layer is
systems level multi-disciplinary. The current industrial
situation lacks a good way to deal with this level.
In figure 1 the current situation is illustrated as having a
cloudy, unclear area of relations between high level,
system descriptors and low, concrete level descriptors.
Starting at a node at the top side of the system description
pyramid it is not unambiguously clear what relations
connect it to nodes on the other side of the cloud. One
view on the chain of relations is given in figure 1 a.
In figure 1 b, a more desirable situation is illustrated. In
this situation the cloud has disappeared and the view on
the system is clear and unambiguous. Now the view is
cleared it is noticeable that the top level descriptor isn’t
just related to some mechanical parts in the left side of the
pyramid, but also to some lines in the software code
displayed in the right hand side of the figure. This is
valuable input information for the system architect in the
development process. Using such a map the architects
and designers could navigate through the design. They
would recognize the structure of the product, and sub
system interfaces would become clearly visible. The
architects would have a clearer and more complete view
on the system and would make their decisions based on a
better foundation.
Such a map of the system would greatly support system
decomposition tasks. When new features are added to the
system, the architects open the map and browse the map
to find out where to position their added functions,
requirements, modules or components. Inserting the new
features and connecting them to the existing system will
reveal to the architect what parts of the system are
influenced by the new features. Once the correct position
is chosen, the interfaces can be specified.

2.3 An FM Approach
The still mainly scientific field of FM claims to address
several of the above mentioned problems. In the following
section of this paper an introduction to FM and an
approach to the sketched problem of creating a bird’s-eye
view using FM are given. The advantages and drawbacks
of this approach are considered

3 FUNCTION MODELING
3.1 Introduction to FM
This chapter will first give a brief summary of Function
Modeling (FM) based on the author’s previous work [8].
FM is developing models of devices/ products/ objects/
processes based on their functionalities and the
functionalities of their sub components. Such a high level
representation scheme of objects provides many facilities.
Some of these schemes include an overall system
description to facilitate the communication and
understanding between engineers of various disciplines
and means to use the computer for reasoning purposes.
The basic concern of FM is how to represent knowledge
about function. The representation framework serves as a
general and common communication frame on one hand,
and to accommodate automated reasoning systems on
the other.
FM is not just about modeling system functions. Modeling
relationships between functions, behaviour and structure
makes FM an interesting candidate to assist system
architects to arrive at good system decomposition into
components and modules.
FM provides a framework for overall system description.
By supporting decomposition of functionalities within one
consistent model, FM bridges the gap between the high-
level requirements and the low-level details. Such a
common model provides a holistic view of the system
above the domains of different expertises and makes it
possible to go back and forth in the design process in
order to check the satisfaction of high-level requirements
by the lower level specifications.
A functional model shows how the general goal of a
system is achieved by realization of sub goals via the sub
functions in the system. Quoting Kitamura et al. [9],
‘functional models represent a part of (but not all of) the
designer’s intentions, so called design rationale’. The
framework which provides the viewpoints and the
necessary vocabulary in order to represent functional
knowledge is called a “functional ontology” ([9], [10]).

3.2 Functional Ontology
The functional concept ontology aims to develop the
necessary framework and language to model the
functionality of a system from the subjective viewpoint of
the human (the designer, user, or developer). The work of
De Kleer and Brown [11], Chandrasekaran and
Josephson [12], Umeda et al. [13], Umeda and Tomiyama
[14], Yoshioka et al. [15], Gero [16], and Keuneke [17] are
attempts to build functional ontologies. For this research
the concepts of the Function-Behaviour-State (FBS)
model of Umeda and Tomiyama [18] will be used.
The FBS method deals with three main concepts, namely;
function, behaviour and state. All three concepts are
independent of engineering disciplines. Function for
example is the top level concept that is closest to the
user’s need. Function is a concept applicable to both
hardware and software and from a purely mechanical to
an electronically controlled servo system. This discipline

independency makes it possible to represent mechatronic
systems in one model.
Umeda and Tomiyama [14] delineate two phases for the
design process. In the first phase the user describes
functions independent of any physical behaviour or
system structure. In the second phase the designer enters
the objective layer by embodying the functions into
behaviours and structural models. Umeda and Tomiyama
mention that manipulation of the behavioural structure is
possible by making use of qualitative physics. On the
other hand, the mental simulation of functions is noted to
be still difficult to be done by computers. The FBS
modeling is proposed as a new knowledge representation
scheme to systematize functional decomposition in the
subjective realm and then to develop a CAD system that
helps the embodiment of the designed functions into a
behavioural and structural system in the objective layer.
In their FBS model Umeda, Tomiyama and their
colleagues develop a function representation, in which the
subjective and objective layers are related to each other
by function-behaviour relationship. The authors define the
function as ‘a description of behaviour recognized by a
human through abstraction in order to utilize it’. They
argue that it is difficult to disassociate function from the
behaviour; therefore, they represent function as a tuple in
which both the human intention (function as to do
something) and physical semantics (behaviour) are
represented. In this way they come up with a
representation through which the subjective selection of
some behaviour as a function is formalized.

3.3 Functional Decomposition
Umeda and Tomiyama [14] consider one of the basic
tasks in design to be a hierarchical decomposition of
functions, which is followed by embodiment in order to
arrive at substantial components at the objective level.
They argue that, hierarchical decomposition is possible
only in the subjective layer by making use of function,
rather than the behaviours or any other objective
category. In Umeda et. al [18], the authors argue, there is
no objective method nor algorithm for functional
decomposition. The process of functional decomposition
includes both “top-down decomposition” and “bottom-up
recognition” of some functions from lower level sub-
functions.
What FM provides for the design process is basically a
model based on the functionalities and sub-functionalities
within the system. Making use of such a model in the
early phases is significant for managing the increasing
complexity of the design processes. This is acknowledged
by America and Wijgerden [19] who make use of
extensive requirements modeling in a real industrial
application. Bonnema and Van Houten [7] investigate the
use of models in conceptual design. They observe that
models are used by designers to handle large amounts of
data, for communication purposes and for analyzing of the
problems. Yoshioka et al. [15] demonstrate that functional
models provide a structure for the design process and
ease the handling of large amounts of data.

3.4 FM Need
Considering the case where the system architects need to
add a new feature to an existing system, the functional
level is the most natural level to start. Adding a new
feature means that we want the system ‘to do something’
new. As we have seen in the foregoing section ‘to do
something’ is the short definition of function in FBS. In the
newly added function description there is not yet a choice

on how to implement the function. Often the added
functions can be decomposed into sub functions. This
decomposition process makes the architects change the
abstraction level they are thinking about the system.
Once the system architects have determined which
lowest level functions are to be added, they will start
thinking about how to realize these functions. In other
words what behaviour is needed to implement the
functions. This function-behaviour relation is a subjective
one-to-many mapping and is the in between step in going
from a function, to detailed system components or state.
Because the relations between the functions, behaviours
and the state are captured in the FBS model there is
traceability of the system objects. All low level
components can be traced back to the top level function
they originated from by following the relations.
All together the FBS model creates both a visual model
that could help the architects in getting a better
understanding of their system on different levels of
abstraction, and a data object model that captures and
stores design data in an continuous, overall system
model knowledge base.

3.5 Extending FM
There are some reasons however why FM is not widely
used in industry already to solve these kind of problems.
Because the research area of FM is still relatively new,
not a great deal of tools and methods are commercially
available. The methods and tools that do exist, for
example the FBS modeller [13], are mostly used in
research labs and for dedicated case studies. This means
that the methods and tools are not yet as commonly
known and accepted in industrial practice as for instance
3D CAD modelling tools.

Ontology Problems
One fundamental issue in FM is the ontology problem. By
the ontology problem we mean that it depends on the
ontology used, in a certain method, how the FM method
can describe certain functions. The ontology provides the
frame in which the system is captured. If the frame is too
narrow it might not allow for certain functions to be
included into the model as desired. When the frame is too
broad it will allow all functions to be included, but it will be
difficult to create a manageable design object data model
since all objects are allowed to be so different.
Take for example the well known systematic engineering
design method from Pahl and Beitz [20], in this method
FM is one of the activities in the conceptual design phase.
In the ontology that Pahl and Beitz use for their FM they
define function as the general input/output relationship of
a system whose purpose is to perform a task. It
represents a flow of energy, materials or signals.
Functions are decomposed into sub-functions and usually
have the “noun” and “verb” form. When we try to use this
definition for design objects in where there is no energy,
material or signal flow we run into trouble. Think for
example about the head support beam of a music
headphone. Although it has a distinct function in the users
perspective to keep the device in the vicinity of the ears, it
can not be characterized by a flow of material, energy or
signal. It is not a straightforward task to make a function
structure of this device using the Pahl and Beitz definition.
Although the ontology used in the FBS method could deal
with this headphone example, it does have difficulties in
other examples like ‘to facilitate cable management’ in a
system.

Missing Modeling Entities
A second fundamental problem is that top level technical
functions often do not directly map onto the user needs.
There are intermediate stages in between. These could
be additional boundary conditions and requirements for
example that the organization poses on the product
development due to strategic considerations. These
additional requirements are not directly translatable into
functions of the system and are not related to other
stakeholders like for example the organizational view of
the product development process. (figure 2), but they do
have to be met and they are valuable to include into the
system overview model because they contain important
design rationale and knowledge.

Figure 2 : Illustration of possible interesting relations

between system design entities.

These kinds of requirements should be traceable. This
indicates that only considering functions in this model
might not be enough. It could prove very valuable to
include a concept like requirements, which is closely
related to function, in a complex systems overview model
that we are developing. Discovering what entities have to
be involved in the models is an important part of this
research.

Systems Decomposition
A third problem is that the existing FBS method does not
really have a facility to consider systems of systems
decompositions. Complex mechatronic systems
nowadays are systems that consist of many sub systems
which are decomposed in a certain way. In a modelling
activity as described in this paper it would be convenient
to manage and create models of sub systems with regard
to the other systems in its surrounding in a systematic,
clear manner. This research will investigate this drawback
of the FBS method and tools.
There are also some practical drawbacks of using FM in
industry. Most organizations use the term function in their
conventional complex product development processes.
The term is used freely and not as a distinct part of some
model. In practice we observed that talking about
functions is not a problem in an industrial environment,
but talking about the functions with both parties having the
same definition of function is sometimes problematic. In
some cases engineers use more the term requirements
for concepts that we would have labelled as functions for
example.
Some issues that need to be added to FM and FBS in
particular are summarized here:
1. Create a better usable systems overview.
2. Support system architects in the systems

decomposition task. Allow them to understand their

systems better and to make a better evaluated
design decision.

3. Create a platform that allows system architects to
trace relations between entities in the system. This
can be realized by highlighting relations between
entities on different levels.

4. Detect interaction between different sub-systems.
This can be both desired and undesired interactions
like discussed by d’Amelio and Tomiyama [2].

5. Once the architects have made design decisions on
system interfaces, they have to manage them. FM
should support interface management throughout the
design process

6. Handle non traditional functions like “facilitate cable
management”.

4 FUTURE WORK
This paper recognized and analyzed an industrial
problem and proposes an approach to solving this
problem using FM.
The next step in this research is to realize the clear
system view described in chapter 2 and schematically
visualized in figure 1. This bird’s-eye view will be created
for a real complex mechatronic case. The created view
will be presented to the system architects and will be
evaluated.
As mentioned in chapter 3 the FBS method will be used
as a starting point for creating this system overview
model, but it will not be just FM. Requirements as a
design concept and design knowledge carrier will be used
in addition to a FM model of the systems. How to
adequately model the relations between the functions and
requirements will be researched. In the coming research
it will be investigated if function and requirements are all
the concepts needed to create a clear system overview.
Other possible concepts to be added to this list are:
organizational structure, design time, employees’
involvement, design decision responsibility structure and
others.
A graphical user interface will be developed to present
and communicate the systems view to the users, the
system architects. Behind the user interface a design
data model and knowledge base will be implemented to
manage the large amount of data. What is needed for
good user interaction and usability will be part of the
coming research.
The created overview model will be evaluated in a system
decomposition exercise where new systems are added to
an existing main system. Measuring the performance of
the system will be done by interviews , observations and
design quality assessments by experienced architects.

5 ACKNOWLEDGEMENT
This work has been carried out as a part of the DARWIN
project at Philips Medical Systems under the
responsibilities of the Embedded Systems Institute. This
project is partially supported by the Dutch Ministry of
Economic Affairs under the BSIK program.

6 REFERENCES
[1] Lindemann, U. and M. Maurer. Facing Multi-Domain

Complexity in Product Development. in The future of
product development, Proceedings of the17th CIRP
Design Conference. 2007. Berlin: Springer-Verlag.

[2] Tomiyama, T. and V. d’Amelio. Towards Design
Interference Detection to Deal with Complex Design

Requirements tree

Relation
??

Requirements Function Model

Organizational tree

??
??

Problems. in The future of product development,
Proceedings of the 17th CIRP Design Conference.
2007. Berlin: Springer-Verlag.

[3] Szykman, S., et al., A web-based system for design
artifact modeling. Design Studies, 2000. 21(2): p.
145-165.

[4] Clarkson, P.J., C. Simons, and C. Eckert, Predicting
Change Propagation in Complex Design. 2004. p.
788-797.

[5] Maletz, M., et al. A Holistic Approach for Integrated
Requirements Modeling in the Product Development
Process. in The future of product development,
Proceedings of the17th CIRP Design Conference.
2007. Berlin: Springer-Verlag.

[6] Szykman, S., et al., A web-based system for design
artifact modeling. 2000, Elsevier. p. 145-165.

[7] Bonnema, G.M., Use of models in conceptual
design. Journal of Engineering Design, 2006. 17(6):
p. 549-562.

[8] Erden, M.S., et al., A Review of Function Modeling:
Approaches and Applications. AIEDAM: Multi Modal
Design, special issue. in press.

[9] Kitamura, Y., et al., Deployment of an ontological
framework of functional design knowledge. 2004,
Elsevier. p. 115-127.

[10] Kitamura, Y. and R. Mizoguchi, Ontology-based
description of functional design knowledge and its
use in a functional way server. 2003, Elsevier. p.
153-166.

[11] De Kleer, J. and J.S. Brown, A Qualitative Physics
based on Confluences. 1984. p. 7-83.

[12] Chandrasekaran, B. and J.R. Josephson, Function
in Device Representation. Engineering with
Computers, 2000. 16(3-4): p. 162-177.

[13] Umeda, Y., et al., Supporting conceptual design
based on the function-behavior-state modeler.
Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 1996. 10(4): p. 275-
288.

[14] Umeda, Y. and T. Tomiyama, FBS Modeling:
Modeling scheme of function for conceptual design,
in Proc. of the 9th Int. Workshop on Qualitative
Reasoning. 1995. p. 11-19.

[15] Yoshioka, M., et al., Physical concept ontology for
the knowledge intensive engineering framework.
Advanced Engineering Informatics, 2004. 18(2): p.
95-113.

[16] Gero, J.S., Design Prototypes: A Knowledge
Representation Schema for Design. AI Magazine,
1990. 11(4): p. 26-36.

[17] Keuneke, A.M., Device representation-the
significance of functional knowledge. IEEE Expert
[see also IEEE Intelligent Systems and Their
Applications], 1991. 6(2): p. 22-25.

[18] Umeda, Y., et al., Function, Behaviour and
Structure, Application of Artificial Intelligence in
Engineering V, Vol 1: Design, JS Gero. 1990,
Computational Mechanics Publications, Boston.

[19] America, P. and J. van Wijgerden, Requirements
Modeling for Families of Complex Systems, in IW-
SAPF 3: Third international Workshop on Software
Architecture for Product Families. 2000, Springer:
Las Palmas.

[20] Pahl, G. and W. Beitz, Engineering Design: A
Systematic Approach. 1996, Berlin: Springer-Verlag.

