
Chapter 1

PROPERTY-PRESERVATION SYNTHESIS
FOR UNIFIED CONTROL- AND
DATA-ORIENTED MODELS

Oana Florescu, Jeroen Voeten, and Henk Corporaal
Eindhoven University of Technology and the Embedded Systems Institute
P.O. Box 513
5600 MB Eindhoven
The Netherlands
o.florescu@tue.nl

Abstract In the Software/Hardware Engineering model-driven design methodology,

preservation of real-time system properties can be guaranteed in the model syn-

thesis up to a small time-deviation. Therefore, this methodology is well suited

for the design and implementation of control-systems, in which execution times

of actions are small; thus the time-deviations obtained are small. However, in

systems containing time-intensive computations, the time-deviations become

large and, consequently, the real-time properties are much weakened. This pa-

per proposes an approach for obtaining stronger preservation of the observable

properties of the system by abstracting from its internal unobservable actions.

In this way, a unified way of analysis and synthesis of a larger area of real-time

applications can be obtained, which enables designers to achieve predictability

in the design of many systems.

Keywords: real-time; property-preservation synthesis; observation equivalence.

1. Introduction
The main purpose of modelling is to help engineers understand the rele-

vant aspects of a system, while avoiding the expense and trouble of actually

building it. Whereas traditional forms of engineering have a well-established

modelling methodology, software engineering, and particularly real-time em-

bedded software, is still an emerging discipline. Although it is applied to in-

creasingly complex systems, its modelling techniques are neither mature nor

10 ADVANCES IN SPECIFICATION AND DESIGN LANGUAGES FOR SOCS

reliable yet (Selic and Motus, 2003). Nevertheless, software models have a

unique and remarkable advantage over most other engineering models: they

can be used to automatically generate the realisation of the system modelled,

which is an executable program for a particular platform. Starting with a sim-

plified and highly abstract model, refinements can be carried out until a com-

plete specification is obtained, including all the details necessary in the final

product. From such a detailed specification, adequate computer tools can gen-

erate an implementation.

The Model-Driven Architecture (MDA) initiative of the Object Manage-

ment Group (Miller et al., 2001) shows that the interest in technologies for

supporting model-driven development has increased. In the development tra-

jectory proposed in MDA, system models are made from early stages to help

designers in reasoning about different trade-offs. By making design decisions

and adding the corresponding details to the model, the design space is nar-

rowed. The software models are kept independent from the platform as long

as possible in this design trajectory. This platform-independence provides the

flexibility of reusing the design model and/or of targeting it to a different plat-

form. Moreover, it may allow the prediction from the model of a suitable plat-

form. Going lower in the design pyramid by increasing the number of details,

a complete specification can be obtained, from which the software implemen-

tation can be automatically generated.

The software components employed in the embedded systems, like the ones

in cars, airplanes, printer/copier machines, or medical devices, are supposed to

synchronise and coordinate different processes and activities. Therefore, their

behaviour must meet hard timing constraints, either for people’s safety or sim-

ply to ensure things work correctly. Usually, a real-time software component

must work together with other software and hardware components to obtain

the specified behaviour. Its correctness depends on both the logical result and

the moment in time when the result was ready. Experience showed that exist-

ing model-driven development approaches for software systems are not suited

to cope with real-time system design. Traditional design approaches proved

themselves unable to capture adequately both functional and non-functional

(timing) characteristics of a system, while abstracting from low-level details.

For predictably designing such systems, an appropriate methodology needs to

provide (Huang et al., 2003b): (i) a suitable modelling technique that can

appropriately capture functional and timing properties in models in order to

formally analyse them, and (ii) a mechanism to generate the implementation

from the model while preserving the properties analysed, phase also known as

model synthesis.

The Software/Hardware Engineering (van der Putten and Voeten, 1997) is a

model-driven design methodology suitable for analysis and synthesis of real-

time systems in which actions need small execution time. In this paper, we

Property-Preservation Synthesis for Unified Control- and Data-Oriented Models 11

propose an idea for synthesis, using the same methodology, of system models

containing both short actions and time-intensive computations while still pre-

serving the real-time properties analysed. We make observations regarding the

possibility of code generation from models which are equivalent from the per-

spective of an external user. By applying this idea, we can have a predictable

and unified trajectory from a model towards a property-preserving system re-

alisation for a large area of real-time applications (both control-oriented and

data-oriented).

The remainder of this paper is organised as follows. Section 2 discusses

related research. Section 3 presents the technique used for formal modelling

of systems. Section 4 shows how the properties of control-oriented systems

models are preserved in their implementations. Section 5 discusses a way to

synthesise models of applications that contain time-intensive computations.

Conclusions are drawn in Section 6.

2. Related Research
In the context of model-driven approaches for software development, the

Unified Modelling Language (OMG, 2003) has been adopted as a standard

facility for constructing models of object-oriented software. UML proved to

be suitable for modelling the functional aspects of a system, which can also

be correctly synthesised. Moreover, extensions were defined to it to provide

a standardised way of denoting non-functional (timing) aspects for real-time

systems as well (OMG, 2005). Nevertheless, the application of mathematical

analysis techniques remains complicated due to the difficulty of relating formal

techniques to UML diagrams, while the synthesis of the model cannot preserve

the timing properties of the system.

For modelling purposes, a number of techniques and theories were pro-

posed, targeting a certain view over a system, e. g. correctness analysis,

scheduling analysis. For example, classic scheduling theory (Buttazzo, 1997)

provides techniques for the analysis of timing behaviour of a system and for the

scheduling of its tasks onto the target platform, such that the timing constraints

are satisfied. Real-time systems are assumed to be composed of independent

tasks with periodic arrival times; therefore, well-studied methods, like rate

monotonic scheduling, can be applied. Nevertheless, analysis of such models

often yields pessimistic results and it is not suitable for handling non-periodic

tasks with non-deterministic behaviours. Moreover, the models analysed by

classical scheduling analysis do not incorporate information about the func-

tionality of tasks, which makes them unsuitable for model synthesis.

A way to relax the stringent constraints on task arrival times is by using

automata with timing constraints to model task arrival patterns. The model

can describe concurrency and synchronisation of periodic, sporadic, preemp-

12 ADVANCES IN SPECIFICATION AND DESIGN LANGUAGES FOR SOCS

tive or non-preemptive real-time tasks with or without precedence constraints.

An automaton is schedulable if there exists a scheduling strategy such that all

possible sequences of events accepted by the automaton are schedulable (all

associated tasks can be computed within deadlines). Based on the results ob-

tained for schedulability analysis on timed automata, the TIMES tool (Amnell

et al., 2003) has been designed for schedulability analysis and synthesis of

real-time systems. A model consists of: (i) a set of application tasks whose

executions may be required to meet different timing, precedence and resource

constraints, (ii) a network of timed automata describing the task arrival pat-

terns and (iii) a preemptive or non-preemptive scheduling policy. From such a

model, the TIMES tool can generate a scheduler and compute the worst-case

response time for all tasks. Nevertheless, TIMES tool does not have enough ex-

pressive power to describe all kinds of data computations involved in a system.

This is due to the exhaustive analysis that might lead to state space explosion

problems if there are many details involved. Therefore, TIMES analysis and

synthesis might not scale up to any kind of system.

3. Real-Time Systems Models
The Software/Hardware Engineering (van der Putten and Voeten, 1997) is a

system-level design methodology that uses a UML profile to formulate the con-

cepts needed for the realisation of the requested functionality of a system. The

UML profile smoothes the application of the Parallel Object-Oriented Specifi-

cation Language (van der Putten and Voeten, 1997) to develop an executable

model, as shown in Figure 1.1. POOSL formalises the behaviour specified

in informal UML diagrams, establishing a formal executable model. The re-

alisation of the system can be generated from this model using the Rotalu-

mis tool (van Bokhoven, 2002).

POOSL is equipped with mathematical semantics that can formally describe

concurrency, distribution, communication, timing and functional features of a

system in a single executable model, using a small set of very powerful prim-

itives. Primitives can be combined in an unrestricted fashion and any com-

bination has a precisely defined meaning. The formal semantics guarantees

a unique and unambiguous interpretation of a POOSL model, guided by se-

mantical axioms and rules, independent of the underlying execution platform.

The importance of the formal semantics of a modelling language in supporting

the predictability of the system design process is investigated in Huang et al.,

2005.

POOSL consists of a process part and a data part. The process part (pro-

cesses and clusters), based on a real-time extension of the process alge-

bra CCS (Milner, 1989), is used to specify the real-time behaviour of active

components. The data part, based upon traditional concepts of sequential

Property-Preservation Synthesis for Unified Control- and Data-Oriented Models 13

System
Requirements

UML Model

Modelling
POOSL

Executable
Model

Formalisation

Meets System
Requirements?

Analyse

No

System
Implementation

(Rotalumis)

Synthesise
Yes

Figure 1.1 SHE method for real-time systems design

S1 S2 S3 S4 S5

S6 S7 S8

a1 t1 a2

a3
a4

t2

t3

Figure 1.2 Example of a timed labelled transition system

object-oriented programming, is used to specify the information that is gen-

erated, exchanged, interpreted or modified by the active components.

The semantics of POOSL is defined as a timed labelled transition system, as

the example in Figure 1.2 shows, where S 1–S 8 represent states of the system,

a1–a4 action transitions and t1–t3 time transitions. A timed labelled transition

system represents an abstract view over a system, considering it as an entity

having some internal state and, depending on that state, it can engage in tran-

sitions leading to other states. Such a transition might be autonomous or stim-

ulated by the environment. When action transitions take place, the state of the

system changes by changing its content (for example, when an event happens,

certain parameters of the system get different values). In case of time transi-

tions, only the time parameter changes its value according to the time interval

specified, whereas the rest of the system content stays the same.

In a model based on the timed labelled transition system, the execution

has two phases, as shown in Figure 1.3: the state of a system changes ei-

ther by asynchronously executing atomic actions, such as communication or

data computation, without passage of time (phase 1), or by letting time pass

synchronously without any action being performed (phase 2).

14 ADVANCES IN SPECIFICATION AND DESIGN LANGUAGES FOR SOCS

� � � � � � � � � � 	 �

 � � � 	
 � � � � � � � � �
 � � � �

� � � � � � � � � 	 �

� � � � � � � � � � � � � � �

Figure 1.3 Two phases of model execution

time

a1
t1 t3

a3 a4

Figure 1.4 A timed trace of the transition system

:Controller

:Environment

in out

sensor actuator

Figure 1.5 The UML model of a simple controller

A run over a transition system represents a timed trace, as the one in Fig-

ure 1.4, where each action is executed at a particular time. As there are many

possible runs due to the parallelism and non-deterministic choices that can be

expressed, a POOSL model represents, in fact, a set of timed traces. If all

the traces of the model satisfy a real-time property (e. g. that a particular event

happens at a certain moment), then the model of a system has that particular

real-time property.

For illustration purposes, a simple controller is used in the following. The

UML graphical representation of this system is provided in Figure 1.5 using the

UML stereotype “capsule”. The small black squares in the figure represent

output ports, and the white ones input ports.

Property-Preservation Synthesis for Unified Control- and Data-Oriented Models 15

Listing 1.1 POOSL model of the simple controller

1 in?input(x); /* x is received as a message */
2 computation(x)(y); /* x is the input, y is the output of ↵

computation */
3 delay deadline; /* wait for deadline units of time */
4 out!output(y); /* y is sent as a message */

S1 S2in? S3computation delay
deadline

S4 S5out!

Figure 1.6 The timed labelled transition system of the model

deadline
in? ; computation

Model
time

out!

t1 t2

Figure 1.7 A timed trace of the controller

The POOSL specification1 of the system is given in Listing 1.1. The con-

troller reads some data x from the environment, performs computations with it

and delivers the result y back to the environment at a certain time.

The timed labelled transition system underlying the POOSL model looks

like in Figure 1.6. According to the semantics of the language, a timed

trace of the model is the one shown in Figure 1.7. in?input(x) and

computation(x)(y) are executed in this exact ordering, without consuming

any time and at the same instant t1. Then, time passes for deadline units (t2 =
t1 + deadline) and, finally, out!output(y) is instantly performed at t2.

4. From a Model to Its Realisation
As mentioned in the previous section, a real-time system can be formalised

as a set of timed traces. If two timed traces have the same sequence of actions, a

notion of distance between them is defined. The distance represents the largest

deviation between the ending points of corresponding time intervals, as shown

in Figure 1.8. Two timed traces whose distance between them is equal to ε are

called ε-close. If two execution traces are ε-close and one of the traces satisfies

1Note that the notations in a POOSL specification are CCS alike.

16 ADVANCES IN SPECIFICATION AND DESIGN LANGUAGES FOR SOCS

time

a1
t1 t3

a3 a4

time

t1- e t3- e
a3 a4 a1

Figure 1.8 Timed traces ε-close

a real-time property2, then this property, weakened up to ε3, is satisfied in the

second trace as well. This result was mathematically proved in Huang et al.,

2003a.

Both the model and the realisation of a system can be viewed as sets of timed

traces. To obtain an implementation of a system which preserves the properties

analysed in its model, thus an implementation consistent with the model, two

things must be achieved: (i) to generate a trace in the implementation from the

set of execution traces of the model, and (ii) to make the corresponding traces

in the model and in the implementation to be ε-close.

A mechanism of generating a trace from a POOSL model was proposed and

proved correct in Geilen, 2002. The data part of a POOSL model is directly

translated into corresponding C++ expressions. Each process in the model

is represented by a C++ data structure named process execution tree (PET)

whose nodes represent statements in the specification of behaviour. During the

evolution of the system, a PET scheduler makes choices for granting actions

or time transitions, while each PET adjusts its internal state according to the

choice of the PET scheduler. This mechanism guarantees that the realisation

of the model generated by the code generation tool is a trace from the model.

However, as actions in a model are timeless, whereas, in reality, it will al-

ways take a certain amount of time to execute them, between the corresponding

traces there appears a time-deviation. If the distance between these two traces

is ε (ε-hypothesis), then all the properties of the model are preserved up to ε in

the implementation.

2An example of a real-time property is that a certain action happens at a particular moment in time.
3If a property P is true in the first trace in the interval [t1, t2], the other trace satisfies P in the interval

[t1 − ε/2, t2 + ε/2].

Property-Preservation Synthesis for Unified Control- and Data-Oriented Models 17

Controller

{t1}
in?

computation

{t1+e1}

out!
{t2}

{t2+e2}

Figure 1.9 Implementation of the controller in physical time

To generate the implementation ε-close to the POOSL model, the code gen-

eration tool, Rotalumis (van Bokhoven, 2002), synchronises the model time
with the physical time. As shown in the UML sequence diagram from Fig-

ure 1.9, all the actions that happen instantly in the model at a certain time t (in

Figure 1.7, in? and computation happen at model time t1, out! at t2), are

executed within a small ε amount of time around the corresponding moment

in physical time (in? and computation are executed in ε1 around physical

time t1, out! in ε2 around t2). To maintain the synchronisation between model

time and physical time, delays are not executed in the implementation exactly

as specified in the model (deadline units of time), but physical time passes

until the next corresponding moment in the model time is reached (the de-

lay deadline = t2 − t1 is shortened to t2 − t1 − ε1).

The size of the maximum time-deviation between a model and its implemen-

tation can be obtained at the time of generation and execution of code by using

measurements. On the other hand, it can be estimated from the model itself,

using the Y-chart scheme (depicted in Figure 1.10) approach for design space

exploration. This scheme contains the models of both the real-time application

and the target platform and by analysing their mapping, as shown in Florescu

et al., 2004b, the time-deviation can be monitored. This deviation depends on

how many actions need to be executed at the same time in the model, as well

as on their execution times. If the value obtained for ε is considered too large,

either the implementation is generated for a higher performance platform, on

which the execution of all the actions takes less time, the mapping is changed

or the model is re-designed.

18 ADVANCES IN SPECIFICATION AND DESIGN LANGUAGES FOR SOCS

Application
model

Platform
model

Mapping

Analysis

Modify
application

Modify
platform

Modify
mapping

Figure 1.10 Y-chart scheme for real-time systems design

5. Realisation of Systems with Time-Intensive
Computations

In a model of a real-time system, usually, a distinction can be made be-

tween actions and time-intensive computations. Action is the name given to an

“activity” specified in the model that needs small execution time on the target

platform (e. g. a control action). On the other hand, time-intensive computa-
tions are the “activities” specified in a model that usually need a considerable

amount of time for execution, as it is the case of the computation in Fig-

ure 1.9. In case of real-time systems containing such computations, the time-

deviation between the model and the implementation is usually large. There-

fore, with the current generation of code, the properties analysed in the model

will be much weakened in the implementation.

Nevertheless, in data-oriented real-time applications, many computations

that take considerable amount of time are modelled (for example, different

multimedia algorithms must be applied on a stream of data). For this kind

of system, it is not intended for the computations to be instantaneous, but to

be finished before a deadline, when the results must be given to the environ-

ment (like in the example given in Section 3).

Two systems are called observational equivalent if they cannot be distin-

guished between them through the interaction of a user with each of them.

They have the same observable properties4 and the same set of timed traces

with respect to these properties. Therefore, an implementation preserving the

observable properties of a model preserves the observable properties of the

observational equivalent one.

4A user can see the same properties by interacting with the systems.

Property-Preservation Synthesis for Unified Control- and Data-Oriented Models 19

Listing 1.2 Observational equivalent model of the controller

1 in?input(x);
2 computation1(x)(y1);
3 delay deadline1;
4 computation2(y1)(y2);
5 delay deadline2;
6 computation3(y2)(y);
7 delay deadline3;
8 out!output(y);

deadline1

in? ; computation1

Model
time

out!

t1 t4
deadline2 deadline3

computation2
computation3

t3t2

Figure 1.11 Observational equivalent model timed trace

Based on this insight, in case of systems with time-intensive computations,

instead of generating an implementation for the original model, we could gen-

erate the implementation for an observational equivalent one. In Listing 1.2,

we give a specification, which is observational equivalent with the example

given in Section 3. The computation is split, for example, into three smaller

parts (computation1, computation2 and computation3) that, put in se-

quence, form the original computation specified in the model. After each small

computation, a certain amount of time delay follows (deadline1, deadline2
and deadline3) and the sum of all delays makes the original delay amount

(deadline = deadline1 + deadline2 + deadline3). A timed trace of this system

is given in Figure 1.11.

The two systems modelled are, obviously, observational equivalent for a

user for whom it is important when the input data x is read from the envi-

ronment, what is the flow of computations performed on x, and when the fi-

nal result y is available. For this system, the existing synthesis mechanism

for POOSL models, which relies on the ε-closeness between traces for the

properties-preservation, can be applied. To obtain an implementation trace ε-
close to its corresponding trace in the model, as shown in the previous section,

a synchronisation of each moment in the model time when an action happens

with the corresponding physical time, up to ε, is realised, as shown in Fig-

ure 1.12. For the implementation of the original model, there are only two

synchronisation points, t1 and t2 from Figure 1.9, and the time-deviation is

20 ADVANCES IN SPECIFICATION AND DESIGN LANGUAGES FOR SOCS

Controller

{t1}
in?

{t1+e1}

out!
{t4}

{t4+e4}

computation1

{t2+e2}

computation2
{t2}

{t3+e3}
computation3

{t3}

Figure 1.12 Implementation of the equivalent model in physical time

large. For the observational equivalent model, in Figure 1.12, there are four

synchronisation points, t1, t2, t3, and t4, and the time-deviation for each of

them is smaller. Therefore, over the whole system, the properties are stronger

preserved in the realisation of the second model.

From the perspective of the code generation tool, looking at Figure 1.12,

what it actually has to do is to generate a trace, in which the execution of the

computation (made of computation1, computation2 and computation3)
starts immediately after reading x from the environment, continues more or less

without stopping, and finishes before the moment the result y must be given

back to the environment. In other words, deadline represents the deadline of

the computation, and only the observable actions of the system are synchro-

nised in the physical time, as depicted in Figure 1.13. The time needed for the

execution of computation does not have to count against the size of the time-

deviation between model and implementation because, for the observational

equivalent model in Figure 1.12, the value of ε is small and it is determined by

the execution time of out!output(y).
As shown in this simple example, the implementation of a model contain-

ing time-intensive computations can be generated from an equivalent model

that has the same observational behaviour and the same properties as the orig-

inal one. Under these circumstances, we can define actions and computations
slightly different than at the beginning of this section. We name actions those

activities that can be observed by a user interacting with the system and, there-

fore, their moments of execution in the model time must be synchronised with

the physical time. On the other hand, computations are the internal activities

of a system that a user cannot observe and who need to be scheduled for execu-

tion such that they can meet their deadlines. Moreover, if they are still running,

Property-Preservation Synthesis for Unified Control- and Data-Oriented Models 21

Controller

{t1}
in?

computation

{t1+e1}

out!
{t2}

{t2+e2}

Figure 1.13 A possible execution that still preserves the properties

Listing 1.3 Example of model without observational equivalence

1 abort
2 (computation(x)(y); delay deadline)
3 with p?urgentMessage;

they can be preempted by an action whose model time must be synchronised

with the physical time. By abstracting from the internal actions of the model

and synchronising the model time with the physical time only for the moments

when observable actions happen, the observable properties of a model can be

preserved; thus the code generation tool can handle the model synthesis of

data-oriented applications as well.

However, it is not always possible to execute a computation within a dead-
line. For a specification like the one given in Listing 1.3, according to the

formal semantics of the language, the urgent message can arrive either before

the execution of computation(x)(y) or during the delay, which means af-

ter the execution of computation has finished. If the computation has a

deadline in the implementation, then, at the time the urgentMessage ap-

pears, the execution of computation must be preempted. The computation
will not be allowed to continue; thus the state in which the system realisation

will be in that moment will not be a state present in the model. In this case, the

relaxation of the timing constraints is not possible because there is no equiv-

alence relation between this model and another one that has the computation

split into smaller parts. Therefore, the execution time of the computation con-

tributes to the total time-deviation between model and implementation of this

system.

22 ADVANCES IN SPECIFICATION AND DESIGN LANGUAGES FOR SOCS

Nevertheless, the mechanism that we propose in this paper for the synthesis

of real-time systems with time-intensive computations has the benefit of using

an existing methodology, without changing the syntax, the semantics of the

modelling language or anything else, just by relaxing the constraints on the

properties to be preserved. However, work needs to be done to formalise these

ideas and to mathematically prove them. Moreover, a mechanism of identifica-

tion of the observational equivalent system whose implementation is the same

with the one of the given model is required.

To analyse a model with different kinds of activities (taking longer or

shorter execution time), the Y-chart scheme can be used again. Such a uni-

fied model helps designers in reasoning about aspects like what is the largest

time-deviation (ε) that the system can allow, or what is an appropriate schedul-

ing of the time-intensive computations, as shown in Florescu et al., 2004a.

6. Conclusions and Future Work
To achieve a predictable design of real-time embedded systems, a unified

executable model, capturing both functional and timing aspects of a system,

is suitable to allow engineers to reason about different properties in a unified

manner. Moreover, such a model must be easily refinable towards a complete

system specification, from which the implementation can be automatically ob-

tained.

In this paper, we have presented how the Software/Hardware Engineering

methodology can be used for the modelling, analysis and synthesis of a large

area of real-time systems (control-oriented, data-oriented applications). The

POOSL modelling language allows specification of both timing and functional

aspects of systems, while the ε-hypothesis guarantees the preservation of prop-

erties between two timed systems with a small time-deviation. By satisfying

the ε-hypothesis, the code generation tool, Rotalumis, succeeds in synthesis-

ing an implementation of a model preserving all the properties, in case the

actions specified are not time-consuming. For the data-oriented applications,

we propose a way to generate the realisation from a model, which is observa-

tional equivalent with the original one, but which has the advantage that the

time-deviation obtained for it is smaller. In fact, we suggest that it is possible

to make an abstraction from the internal actions of the system and synchronise

the physical time with the model time only for the observable actions. More-

over, this realisation would preserve the observable properties of the original

real-time system.

For the future research, we aim at formalising this mechanism and at giv-

ing a mathematical definition for the circumstances when computations can

be safely preempted by actions. Furthermore, we want to adapt the code gen-

Property-Preservation Synthesis for Unified Control- and Data-Oriented Models 23

eration tool to work according to the proposed mechanism and to apply it to

realistic case studies.

Acknowledgments
This work is being carried out as part of the Boderc project under the respon-

sibility of the Embedded Systems Institute. This project is partially supported

by the Netherlands Ministry of Economic Affairs under the Senter TS pro-

gram.

References
Amnell, Tobias, Fersman, Elena, Mokrushin, Leonid, Pettersson, Paul, and Yi,

Wang (2003). TIMES: a tool for schedulability analysis and code generation

of real-time systems. In 1st International Workshop on Formal Modeling and
Analysis of Timed Systems (FORMATS) 2003.

Buttazzo, Giorgio (1997). Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer Academic Publishers,

Boston, Massachusetts, USA.

Florescu, Oana, Voeten, Jeroen, and Corporaal, Henk (2004a). A unified model

for analysis of real-time properties. In 1st International Symposium on
Leveraging Applications of Formal Methods (ISoLa) 2004.

Florescu, Oana, Voeten, Jeroen, Huang, Jinfeng, and Corporaal, Henk (2004b).

Error estimation in model-driven development for real-time software. In Fo-
rum on Specification & Design Languages (FDL) 2004.

Geilen, Marc (2002). Formal Techniques for Verification of Complex Real-Time
Systems. PhD thesis, Eindhoven University of Technology, Eindhoven, the

Netherlands.

Huang, Jinfeng, Voeten, Jeroen, Florescu, Oana, van der Putten, Piet, and Cor-

poraal, Henk (2005). Advances in Design and Specification Languages for
SoCs (Best of FDL’04), chapter Predictability in real-time system develop-

ment. Kluwer Academic Publishers.

Huang, Jinfeng, Voeten, Jeroen, and Geilen, Marc (2003a). Real-time property

preservation in approximations of timed systems. In 1st ACM & IEEE Inter-
national Conference on Formal Methods and Models for Codesign (MEM-
OCODE’2003).

Huang, Jinfeng, Voeten, Jeroen, Ventevogel, Andre, and van Bokhoven, Leo

(2003b). Platform-independent design for embedded real-time systems. In

Forum on Specification & Design Languages (FDL) 2003.

Miller, Joaquin, Mukerji, Jishnu, et al. (2001). Model driven architec-

ture (MDA. Technical report, Object Management Group (OMG), Need-

ham, Massachusetts, USA. OMG document ormsc/2001-07-01.

24 ADVANCES IN SPECIFICATION AND DESIGN LANGUAGES FOR SOCS

Milner, Robin (1989). Communication and Concurrency. Prentice Hall In-

ternational Series in Computer Science. Prentice Hall, Englewood Cliffs,

New Jersey, USA.

OMG (2003). OMG Unified Modeling Language (UML) Specification—
Version 1.5. Object Management Group (OMG), Needham, Massachusetts,

USA. OMG document formal/2003-03-01.

OMG (2005). UML Profile for Schedulability, Performance, and Time
Specification—Version 1.1. Object Management Group (OMG), Needham,

Massachusetts, USA. OMG document formal/2005-01-02.

Selic, Bran and Motus, Leo (2003). Using models in real-time software design.

IEEE Control Systems Magazine, 23(3).

van Bokhoven, Leo (2002). Constructive Tool Design for Formal Languages:
From Semantics to Executing Models. PhD thesis, Eindhoven University of

Technology, Eindhoven, the Netherlands.

van der Putten, Piet and Voeten, Jeroen (1997). Specification of Reactive Hard-
ware/Software Systems. PhD thesis, Eindhoven University of Technology,

Eindhoven, the Netherlands.

